## CALIFORNIA BUILDING CODE – MATRIX ADOPTION TABLE
### CHAPTER 16 – STRUCTURAL DESIGN

(Matrix Adoption Tables are non-regulatory, intended only as an aid to the user. See Chapter 1 for state agency authority and building applications.)

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>BSC</th>
<th>SFM</th>
<th>HCD</th>
<th>DSA</th>
<th>OSHPD</th>
<th>BCSC</th>
<th>DPH</th>
<th>AGR</th>
<th>DWR</th>
<th>CEC</th>
<th>CA</th>
<th>SL</th>
<th>SLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adopt entire chapter</td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

### Chapter / Section

<table>
<thead>
<tr>
<th>Chapter / Section</th>
<th>Adopted</th>
</tr>
</thead>
<tbody>
<tr>
<td>1601.1.1</td>
<td>X</td>
</tr>
<tr>
<td>1601.1.2</td>
<td>X</td>
</tr>
<tr>
<td>1601.1.3</td>
<td>X</td>
</tr>
<tr>
<td>1601.1.4</td>
<td>X</td>
</tr>
<tr>
<td>1601.2</td>
<td>X</td>
</tr>
<tr>
<td>1601.3</td>
<td>X</td>
</tr>
<tr>
<td>1602.1</td>
<td>X</td>
</tr>
<tr>
<td>1603.1</td>
<td>X</td>
</tr>
<tr>
<td>1607.1, Table 1607.1</td>
<td>X</td>
</tr>
<tr>
<td>1607.8</td>
<td>X</td>
</tr>
<tr>
<td>1607.8.2</td>
<td>X</td>
</tr>
<tr>
<td>1612.3</td>
<td>X</td>
</tr>
<tr>
<td>1613.1</td>
<td>X</td>
</tr>
<tr>
<td>1613.1.1</td>
<td>X</td>
</tr>
<tr>
<td>1613.1.2</td>
<td>X</td>
</tr>
<tr>
<td>1613.1.3</td>
<td>X</td>
</tr>
<tr>
<td>1613.3.1</td>
<td>X</td>
</tr>
<tr>
<td>1613.3.2</td>
<td>X</td>
</tr>
<tr>
<td>1613.3.5</td>
<td>X</td>
</tr>
<tr>
<td>1613.3.5.1</td>
<td>X</td>
</tr>
<tr>
<td>1613.3.5.2</td>
<td>X</td>
</tr>
<tr>
<td>1613.3.6.1</td>
<td>X</td>
</tr>
<tr>
<td>1613.3.6.2</td>
<td>X</td>
</tr>
<tr>
<td>1613.5</td>
<td>X</td>
</tr>
<tr>
<td>1613.5.1</td>
<td>X</td>
</tr>
<tr>
<td>1613.5.2</td>
<td>X</td>
</tr>
<tr>
<td>1613.6</td>
<td>X</td>
</tr>
<tr>
<td>1616</td>
<td>X</td>
</tr>
</tbody>
</table>
CHAPTER 16
STRUCTURAL DESIGN

SECTION 1601
GENERAL

1601.1 Scope. The provisions of this chapter shall govern the structural design of buildings, structures and portions thereof regulated by this code.

1601.1.1 Application. [DSA-SS/CC] The scope of application of Chapter 16 is as follows:

Community college buildings regulated by the Division of the State Architect-Structural Safety/Community Colleges (DSA-SS/CC), as listed in Section 1.9.2.2.

1601.1.2 Identification of amendments. [DSA-SS/CC] Division of the State Architect-Structural Safety/Community Colleges (DSA-SS/CC) amendments appear in this chapter preceded with the appropriate acronym, as follows:

Division of the State Architect - Structural Safety/Community Colleges: [DSA-SS/CC] - For community college buildings listed in Section 1.9.2.2

1601.1.3 Reference to other chapters. [DSA-SS/CC] Where reference within this chapter is made to sections in Chapters 17 and 18, the provisions in Chapters 17A and 18A respectively shall apply instead.

1601.1.4 Amendments. [DSA-SS/CC] See Section 1616 for additional requirements.

1601.2 Enforcement agency approval. [DSA-SS/CC, OSHPD 2] In addition to requirements of the California Administrative Code and the California Building Code, any aspect of project design, construction, quality assurance or quality control programs for which this code requires approval by the design professional, are also subject to approval by the enforcement agency.

SECTION 1602
DEFINITIONS AND NOTATIONS

1602.1 Definitions. The following terms are defined in Chapter 2:

ALLOWABLE STRESS DESIGN.

DEAD LOADS.

DESIGN STRENGTH.

DIAPHRAGM.

Diaphragm, blocked.

Diaphragm boundary.

Diaphragm chord.

Diaphragm flexible.

Diaphragm, rigid.

DURATION OF LOAD.

ENFORCEMENT AGENT. [OSHPD 2] That individual within the agency or organization charged with responsibility for agency or organization compliance with the requirements of this code. Used interchangeably with “Building Official” or “Code Official.”

ESSENTIAL FACILITIES.

FABRIC PARTITION.

FACTORED LOAD.

HELIPAD.

ICE-SENSITIVE STRUCTURE.

IMPACT LOAD.

LIMIT STATE.

LIVE LOAD.

LIVE LOAD (ROOF).

LOAD AND RESISTANCE FACTOR DESIGN (LRFD).

LOAD EFFECTS.

LOAD FACTOR.

LOADS.

NOMINAL LOADS.

OTHER STRUCTURES.

PANEL (PART OF A STRUCTURE).

RESISTANCE FACTOR.

RISK CATEGORY.

STRENGTH, NOMINAL.

STRENGTH, REQUIRED.

STRENGTH DESIGN.

SUSCEPTIBLE BAY.

VEHICLE BARRIER.

NOTATIONS.

\[ D = \text{Dead load.} \]

\[ D_i = \text{Weight of ice in accordance with Chapter 10 of ASCE 7.} \]

\[ E = \text{Combined effect of horizontal and vertical earthquake induced forces as defined in Section 12.4.2 of ASCE 7.} \]

\[ F = \text{Load due to fluids with well-defined pressures and maximum heights.} \]

\[ F_s = \text{Flood load in accordance with Chapter 5 of ASCE 7.} \]

\[ H = \text{Load due to lateral earth pressures, ground water pressure or pressure of bulk materials.} \]

\[ L = \text{Roof live load greater than 20 psf (0.96 kN/m²) and floor live load.} \]

\[ L_r = \text{Roof live load of 20 psf (0.96 kN/m²) or less.} \]

\[ R = \text{Rain load.} \]
STRUCTURAL DESIGN

S = Snow load.
T = Self-straining load.
\( V_{\text{end}} \) = Nominal design wind speed (3-second gust), miles per hour (mph) (km/hr) where applicable.
\( V_{\text{ult}} \) = Ultimate design wind speeds (3-second gust), miles per hour (mph) (km/hr) determined from Figures 1609A, 1609B, or 1609C or ASCE 7.
W = Load due to wind pressure.
\( W_i \) = Wind-on-ice in accordance with Chapter 10 of ASCE 7.

SECTION 1603
CONSTRUCTION DOCUMENTS

1603.1 General. Construction documents shall show the size, section and relative locations of structural members with floor levels, column centers and offsets dimensioned. The design loads and other information pertinent to the structural design required by Sections 1603.1.1 through 1603.1.9 shall be indicated on the construction documents.

Exception: Construction documents for buildings constructed in accordance with the conventional light-frame construction provisions of Section 2308 shall indicate the following structural design information:

1. Floor and roof live loads.
2. Ground snow load, \( P_g \).
3. Ultimate design wind speed, \( V_{\text{ult}} \) (3-second gust), miles per hour (mph) and nominal design wind speed, \( V_{\text{end}} \), as determined in accordance with Section 1609.3.1 and wind exposure.
4. Seismic design category and site class.
5. Flood design data, if located in flood hazard areas established in Section 1612.3.
6. Design load-bearing values of soils.

[OSHPD 2] Additional requirements are included in Sections 7-115 and 7-125 of the California Administrative Code (Part 1, Title 24, C.C.R.).

1603.1.1 Floor live load. The uniformly distributed, concentrated and impact floor live load used in the design shall be indicated for floor areas. Use of live load reduction in accordance with Section 1607.10 shall be indicated for each type of live load used in the design.

1603.1.2 Roof live load. The roof live load used in the design shall be indicated for roof areas (Section 1607.12).

1603.1.3 Roof snow load data. The ground snow load, \( P_g \), shall be indicated. In areas where the ground snow load, \( P_g \), exceeds 10 pounds per square foot (psf) (0.479 kN/m²), the following additional information shall also be provided, regardless of whether snow loads govern the design of the roof:

1. Flat-roof snow load, \( P_f \).
2. Snow exposure factor, \( C_x \).
3. Snow load importance factor, \( I_e \).
4. Thermal factor, \( C_t \).

1603.1.4 Wind design data. The following information related to wind loads shall be shown, regardless of whether wind loads govern the design of the lateral force-resisting system of the structure:

1. Ultimate design wind speed, \( V_{\text{ult}} \) (3-second gust), miles per hour (km/hr) and nominal design wind speed, \( V_{\text{end}} \), as determined in accordance with Section 1609.3.1.
2. Risk category.
3. Wind exposure. Where more than one wind exposure is utilized, the wind exposure and applicable wind direction shall be indicated.
4. The applicable internal pressure coefficient.
5. Components and cladding. The design wind pressures in terms of psf (kN/m²) to be used for the design of exterior component and cladding materials not specifically designed by the registered design professional.

1603.1.5 Earthquake design data. The following information related to seismic loads shall be shown, regardless of whether seismic loads govern the design of the lateral force-resisting system of the structure:

1. Risk category.
2. Seismic importance factor, \( I_e \).
3. Mapped spectral response acceleration parameters, \( S_{S1} \) and \( S_{S2} \).
4. Site class.
5. Design spectral response acceleration parameters, \( S_{DS} \) and \( S_{DS'} \).
6. Seismic design category.
7. Basic seismic force-resisting system(s).
8. Design base shear(s).
9. Seismic response coefficient(s), \( C_s \).
10. Response modification coefficient(s), \( R \).
11. Analysis procedure used.

1603.1.6 Geotechnical information. The design load-bearing values of soils shall be shown on the construction documents.

1603.1.7 Flood design data. For buildings located in whole or in part in flood hazard areas as established in Section 1612.3, the documentation pertaining to design, if required in Section 1612.5, shall be included and the following information, referenced to the datum on the community’s Flood Insurance Rate Map (FIRM), shall be shown, regardless of whether flood loads govern the design of the building:

1. In flood hazard areas not subject to high-velocity wave action, the elevation of the proposed lowest floor, including the basement.
2. In flood hazard areas not subject to high-velocity wave action, the elevation to which any nonresidential building will be dry flood proofed.
3. In flood hazard areas subject to high-velocity wave action, the proposed elevation of the bottom of the lowest horizontal structural member of the lowest floor, including the basement.

1603.1.8 Special loads. Special loads that are applicable to the design of the building, structure or portions thereof shall be indicated along with the specified section of this code that addresses the special loading condition.

1603.1.9 Systems and components requiring special inspections for seismic resistance. Construction documents or specifications shall be prepared for those systems and components requiring special inspection for seismic resistance as specified in Section 1705.11 by the registered design professional responsible for their design and shall be submitted for approval in accordance with Section 107.1, Chapter 1, Division II. Reference to seismic standards in lieu of detailed drawings is acceptable.

SECTION 1604
GENERAL DESIGN REQUIREMENTS

1604.1 General. Building, structures and parts thereof shall be designed and constructed in accordance with strength design, load and resistance factor design, allowable stress design, empirical design or conventional construction methods, as permitted by the applicable material chapters.

1604.2 Strength. Buildings and other structures, and parts thereof, shall be designed and constructed to support safely the factored loads in load combinations defined in this code without exceeding the appropriate strength limit states for the materials of construction. Alternatively, buildings and other structures, and parts thereof, shall be designed and constructed to support safely the nominal loads in load combinations defined in this code without exceeding the appropriate specified allowable stresses for the materials of construction.

Loads and forces for occupancies or uses not covered in this chapter shall be subject to the approval of the building official.

1604.3 Serviceability. Structural systems and members thereof shall be designed to have adequate stiffness to limit deflections and lateral drift. See Section 12.12.1 of ASCE 7 for drift limits applicable to earthquake loading.

1604.3.1 Deflections. The deflections of structural members shall not exceed the more restrictive of the limitations of Sections 1604.3.2 through 1604.3.5 or that permitted by Table 1604.3.

1604.3.2 Reinforced concrete. The deflection of reinforced concrete structural members shall not exceed that permitted by ACI 318.

1604.3.3 Steel. The deflection of steel structural members shall not exceed that permitted by AISC 360, AISI S100, ASCE 8, SJI CJ-1.0, SJI JG-1.1, SJI K-1.1 or SJI LH/DLH-1.1, as applicable.

### TABLE 1604.3
DEFLECTION LIMITS

<table>
<thead>
<tr>
<th>CONSTRUCTION</th>
<th>L</th>
<th>S or W</th>
<th>D + L&lt;sup&gt;4&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof members:&lt;sup&gt;g&lt;/sup&gt;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supporting plaster or stucco ceiling</td>
<td>/360</td>
<td>/360</td>
<td>/240</td>
</tr>
<tr>
<td>Supporting nonplaster ceiling</td>
<td>/240</td>
<td>/240</td>
<td>/180</td>
</tr>
<tr>
<td>Not supporting ceiling</td>
<td>/180</td>
<td>/180</td>
<td>/120</td>
</tr>
<tr>
<td>Floor members</td>
<td>/360</td>
<td>—</td>
<td>/240</td>
</tr>
<tr>
<td>Exterior walls and interior partitions:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With plaster or stucco finishes</td>
<td>—</td>
<td>/360</td>
<td>—</td>
</tr>
<tr>
<td>With other brittle finishes</td>
<td>—</td>
<td>/240</td>
<td>—</td>
</tr>
<tr>
<td>With flexible finishes</td>
<td>—</td>
<td>/120</td>
<td>—</td>
</tr>
<tr>
<td>Farm buildings</td>
<td>—</td>
<td>—</td>
<td>/180</td>
</tr>
<tr>
<td>Greenhouses</td>
<td>—</td>
<td>—</td>
<td>/120</td>
</tr>
</tbody>
</table>

For SI: 1 foot = 304.8 mm.

a. For structural roofing and siding made of formed metal sheets, the total load deflection shall not exceed l/60. For secondary roof structural members supporting formed metal roofing, the live load deflection shall not exceed l/150. For secondary wall members supporting formed metal siding, the design wind load deflection shall not exceed l/90. For roofs, this exception only applies when the metal sheets have no roof covering.

b. Interior partitions not exceeding 6 feet in height and flexible, folding and portable partitions are not governed by the provisions of this section. The deflection criterion for interior partitions is based on the horizontal load defined in Section 1607.14.

c. See Section 2403 for glass supports.

d. For wood structural members having a moisture content of less than 16 percent at time of installation and used under dry conditions, the deflection resulting from L + 0.5D is permitted to be substituted for the deflection resulting from L + D.

e. The above deflections do not ensure against ponding. Roofs that do not have sufficient slope or camber to assure adequate drainage shall be investigated for ponding. See Section 1611 for rain and ponding requirements and Section 1503.4 for roof drainage requirements.

f. The wind load is permitted to be taken as 0.42 times the “component and cladding” loads for the purpose of determining deflection limits herein.

g. For steel structural members, the dead load shall be taken as zero.

h. For aluminum structural members or aluminum panels used in skylights and sloped glazed framing, roofs or walls of sunroom additions or patio covers, not supporting edge of glass or aluminum sandwich panels, the total load deflection shall not exceed l/60. For continuous aluminum structural members supporting edge of glass, the total load deflection shall not exceed l/175 for each glass lite or l/60 for the entire length of the member, whichever is more stringent. For aluminum sandwich panels used in roofs or walls of sunroom additions or patio covers, the total load deflection shall not exceed l/120.

i. For cantilever members, I shall be taken as twice the length of the cantilever.
1604.3.4 Masonry. The deflection of masonry structural members shall not exceed that permitted by TMS 402/ACI 530/ASCE 5.

1604.3.5 Aluminum. The deflection of aluminum structural members shall not exceed that permitted by AA ADM1.

1604.3.6 Limits. The deflection limits of Section 1604.3.1 shall be used unless more restrictive deflection limits are required by a referenced standard for the element or finish material.

1604.4 Analysis. Load effects on structural members and their connections shall be determined by methods of structural analysis that take into account equilibrium, general stability, geometric compatibility and both short- and long-term material properties.

Members that tend to accumulate residual deformations under repeated service loads shall have included in their analysis the added eccentricities expected to occur during their service life.

Any system or method of construction to be used shall be based on a rational analysis in accordance with well-established principles of mechanics. Such analysis shall result in a system that provides a complete load path capable of transferring loads from their point of origin to the load-resisting elements.

The total lateral force shall be distributed to the various vertical elements of the lateral force-resisting system in proportion to their rigidities, considering the rigidity of the horizontal bracing system or diaphragm. Rigid elements assumed not to be a part of the lateral force-resisting system are permitted to be incorporated into buildings provided their effect on the action of the system is considered and provided for in the design. Except where diaphragms are flexible, or are permitted to be analyzed as flexible, provisions shall be made for the increased forces induced on resisting elements of the structural system resulting from torsion due to eccentricity between the center of application of the lateral forces and the center of rigidity of the lateral force-resisting system.

Every structure shall be designed to resist the overturning effects caused by the lateral forces specified in this chapter. See Section 1609 for wind loads, Section 1610 for lateral soil loads and Section 1613 for earthquake loads.

1604.5 Risk category. Each building and structure shall be assigned a risk category in accordance with Table 1604.5. Where a referenced standard specifies an occupancy category, the risk category shall not be taken as lower than the occupancy category specified therein.

1604.5.1 Multiple occupancies. Where a building or structure is occupied by two or more occupancies not included in the same risk category, it shall be assigned the classification of the highest risk category corresponding to the various occupancies. Where buildings or structures have two or more portions that are structurally separated, each portion shall be separately classified. Where a separated portion of a building or structure provides required access to, required egress from or shares life safety components with another portion having a higher risk category, both portions shall be assigned to the higher risk category.

1604.6 In-situ load tests. The building official is authorized to require an engineering analysis or a load test, or both, of any construction whenever there is reason to question the safety of the construction for the intended occupancy. Engineering analysis and load tests shall be conducted in accordance with Section 1709.

1604.7 Preconstruction load tests. Materials and methods of construction that are not capable of being designed by approved engineering analysis or that do not comply with the applicable referenced standards, or alternative test procedures in accordance with Section 1707, shall be load tested in accordance with Section 1710.

1604.8 Anchorage. Buildings and other structures, and portions thereof, shall be provided with anchorage in accordance with Sections 1604.8.1 through 1604.8.3, as applicable.

1604.8.1 General. Anchorage of the roof to walls and columns, and of walls and columns to foundations, shall be provided to resist the uplift and sliding forces that result from the application of the prescribed loads.

1604.8.2 Structural walls. Walls that provide vertical load-bearing resistance or lateral shear resistance for a portion of the structure shall be anchored to the roof and to all floors and members that provide lateral support for the wall or that are supported by the wall. The connections shall be capable of resisting the horizontal forces specified in Section 1.4.4 of ASCE 7 for walls of structures assigned to Seismic Design Category A and to Section 12.11 of ASCE 7 for walls of structures assigned to all other seismic design categories. Required anchors in masonry walls of hollow units or cavity walls shall be embedded in a reinforced grouted structural element of the wall. See Sections 1609 for wind design requirements and 1613 for earthquake design requirements.

1604.8.3 Decks. Where supported by attachment to an exterior wall, decks shall be positively anchored to the primary structure and designed for both vertical and lateral loads as applicable. Such attachment shall not be accomplished by the use of toenails or nails subject to withdrawal. Where positive connection to the primary building structure cannot be verified during inspection, decks shall be self-supporting. Connections of decks with cantilevered framing members to exterior walls or other framing members shall be designed for both of the following:

1. The reactions resulting from the dead load and live load specified in Table 1607.1, or the snow load specified in Section 1608, in accordance with Section 1605, acting on all portions of the deck.

2. The reactions resulting from the dead load and live load specified in Table 1607.1, or the snow load specified in Section 1608, in accordance with Section 1605, acting on the cantilevered portion of the deck, and no live load or snow load on the remaining portion of the deck.
1604.9 Counteracting structural actions. Structural members, systems, components and cladding shall be designed to resist forces due to earthquakes and wind, with consideration of overturning, sliding and uplift. Continuous load paths shall be provided for transmitting these forces to the foundation. Where sliding is used to isolate the elements, the effects of friction between sliding elements shall be included as a force.

1604.10 Wind and seismic detailing. Lateral force-resisting systems shall meet seismic detailing requirements and limitations prescribed in this code and ASCE 7, excluding Chapter 14 and Appendix 11A, even when wind load effects are greater than seismic load effects.

SECTION 1605
LOAD COMBINATIONS

1605.1 General. Buildings and other structures and portions thereof shall be designed to resist:

1. The load combinations specified in Section 1605.2, 1605.3.1 or 1605.3.2;

2. The load combinations specified in Chapters 18 through 23; and

3. The seismic load effects including overstrength factor in accordance with Section 12.4.3 of ASCE 7 where required by Section 12.2.5.2, 12.3.3.3 or 12.10.2.1 of...
1.2...

ASCE 7. With the simplified procedure of ASCE 7 Section 12.14, the seismic load effects including overstrength factor in accordance with Section 12.14.3.2 of ASCE 7 shall be used.

Applicable loads shall be considered, including both earthquake and wind, in accordance with the specified load combinations. Each load combination shall also be investigated with one or more of the variable loads set to zero.

Where the load combinations with overstrength factor in Section 12.4.3.2 of ASCE 7 apply, they shall be used as follows:

1. The basic combinations for strength design with overstrength factor in lieu of Equations 16-5 and 16-7 in Section 1605.2.

2. The basic combinations for allowable stress design with overstrength factor in lieu of Equations 16-12, 16-14 and 16-16 in Section 1605.3.1.

3. The basic combinations for allowable stress design with overstrength factor in lieu of Equations 16-21 and 16-22 in Section 1605.3.2.

1605.1.1 Stability. Regardless of which load combinations are used to design for strength, where overall structure stability (such as stability against overturning, sliding, or buoyancy) is being verified, use of the load combinations specified in Section 1605.2 or 1605.3 shall be permitted. Where the load combinations specified in Section 1605.2 are used, strength reduction factors applicable to soil resistance shall be provided by a registered design professional. The stability of retaining walls shall be verified in accordance with Section 1807.2.3.

1605.2 Load combinations using strength design or load and resistance factor design. Where strength design or load and resistance factor design is used, buildings and other structures, and portions thereof, shall be designed to resist the most critical effects resulting from the following combinations of factored loads:

\[
D + F \quad \text{(Equation 16-1)}
\]

\[
D + H + F + L \quad \text{(Equation 16-9)}
\]

\[
D + H + F + (L, \text{ or } S \text{ or } R) \quad \text{(Equation 16-10)}
\]

\[
D + H + F + 0.75(L) + 0.75(L, \text{ or } S \text{ or } R) \quad \text{(Equation 16-11)}
\]

\[
D + H + F + (0.6W \text{ or } 0.7E) \quad \text{(Equation 16-12)}
\]

\[
D + H + F + 0.75(0.6W) + 0.75L + 0.75(L, \text{ or } S \text{ or } R) \quad \text{(Equation 16-13)}
\]

\[
D + H + F + 0.75 (0.7E) + 0.75L + 0.75S \quad \text{(Equation 16-14)}
\]

\[
0.6D + 0.6W + H \quad \text{(Equation 16-15)}
\]

\[
0.6(D + F) + 0.7E + H \quad \text{(Equation 16-16)}
\]

Exceptions:

1. Crane hook loads need not be combined with roof live load or with more than three-fourths of the snow load or one-half of the wind load.

2. Flat roof snow loads of 30 psf (1.44 kN/m²) or less and roof live loads of 30 psf (1.44 kN/m²) or less need not be combined with seismic loads. Where flat roof snow loads exceed 30 psf (1.44 kN/m²), 20 percent shall be combined with seismic loads.
3. Where the effect of $H$ resists the primary variable load effect, a load factor of 0.6 shall be included with $H$ where $H$ is permanent and $H$ shall be set to zero for all other conditions.

4. In Equation 16-15, the wind load, $W$, is permitted to be reduced in accordance with Exception 2 of Section 2.4.1 of ASCE 7.

5. In Equation 16-16, 0.6 $D$ is permitted to be increased to 0.9 $D$ for the design of special reinforced masonry shear walls complying with Chapter 21.

**1605.3.1.1 Stress increases.** Increases in allowable stresses specified in the appropriate material chapter or the referenced standards shall not be used with the load combinations of Section 1605.3.1, except that increases shall be permitted in accordance with Chapter 23.

**1605.3.1.2 Other loads.** Where flood loads, $F_f$, are to be considered in design, the load combinations of Section 2.4.2 of ASCE 7 shall be used. Where self-straining loads, $T$, are considered in design, their structural effects in combination with other loads shall be determined in accordance with Section 2.4.4 of ASCE 7. Where an ice-sensitive structure is subjected to loads due to atmospheric icing, the load combinations of Section 2.4.3 of ASCE 7 shall be considered.

**1605.3.2 Alternative basic load combinations.** In lieu of the basic load combinations specified in Section 1605.3.1, structures and portions thereof shall be permitted to be designed for the most critical effects resulting from the following combinations. When using these alternative basic load combinations that include wind or seismic loads, allowable stresses are permitted to be increased or load combinations reduced where permitted by the material chapter of this code or the referenced standards. For load combinations that include the counteracting effects of dead and wind loads, only two-thirds of the minimum dead load likely to be in place during a design wind event shall be used. When using allowable stresses which have been increased or load combinations which have been reduced as permitted by the material chapter of this code or the referenced standards, where wind loads are calculated in accordance with Chapters 26 through 31 of ASCE 7, the coefficient ($\alpha$) in the following equations shall be taken as 1.3. For other wind loads, ($\alpha$) shall be taken as 1. When allowable stresses have not been increased or load combinations have not been reduced as permitted by the material chapter of this code or the referenced standards, ($w$) shall be taken as 1. When using these alternative load combinations to evaluate sliding, overturning and soil bearing at the soil-structure interface, the reduction of foundation overturning from Section 12.13.4 in ASCE 7 shall not be used. When using these alternative basic load combinations for proportioning foundations for loadings, which include seismic loads, the vertical seismic load effect, $E_v$, in Equation 12.4-4 of ASCE 7 is permitted to be taken equal to zero.

\[
D + L + (L_c \text{ or } S \text{ or } R)
\]  
(Equation 16-17)

\[
D + L + 0.6 \omega W
\]  
(Equation 16-18)

\[
D + L + 0.6 \omega W + S/2
\]  
(Equation 16-19)

\[
D + L + S + 0.6 \omega W
\]  
(Equation 16-20)

\[
D + L + S + E/1.4
\]  
(Equation 16-21)

\[
0.9D + E/1.4
\]  
(Equation 16-22)

**Exceptions:**

1. Crane hook loads need not be combined with roof live loads or with more than three-fourths of the snow load or one-half of the wind load.

2. Flat roof snow loads of 30 psf (1.44 kN/m²) or less and roof live loads of 30 psf (1.44 kN/m²) or less need not be combined with seismic loads. Where flat roof snow loads exceed 30 psf (1.44 kN/m²), 20 percent shall be combined with seismic loads.

**1605.3.2.1 Other loads.** Where $F$, $H$ or $T$, are to be considered in the design, each applicable load shall be added to the combinations specified in Section 1605.3.2. Where self-straining loads, $T$, are considered in design, their structural effects in combination with other loads shall be determined in accordance with Section 2.4.4 of ASCE 7.

**SECTION 1606 DEAD LOADS**

**1606.1 General.** Dead loads are those loads defined in Section 1602.1. Dead loads shall be considered permanent loads.

**1606.2 Design dead load.** For purposes of design, the actual weights of materials of construction and fixed service equipment shall be used. In the absence of definite information, values used shall be subject to the approval of the building official.

**SECTION 1607 LIVE LOADS**

**1607.1 General.** Live loads are those loads defined in Section 1602.1.

**1607.2 Loads not specified.** For occupancies or uses not designated in Table 1607.1, the live load shall be determined in accordance with a method approved by the building official.

**1607.3 Uniform live loads.** The live loads used in the design of buildings and other structures shall be the maximum loads expected by the intended use or occupancy but shall in no case be less than the minimum uniformly distributed live loads given in Table 1607.1.

**1607.4 Concentrated live loads.** Floors and other similar surfaces shall be designed to support the uniformly distributed live loads prescribed in Section 1607.3 or the concentrated live loads, in pounds (kiloNewtons), given in Table 1607.1, whichever produces the greater load effects. Unless otherwise specified, the indicated concentration shall be assumed to be uniformly distributed over an area of $2^{1/2}$ feet by $2^{1/2}$ feet (762 mm by 762 mm) and shall be located so as to produce the maximum load effects in the structural members.
<table>
<thead>
<tr>
<th>OCCUPANCY OR USE</th>
<th>UNIFORM (psf)</th>
<th>CONCENTRATED (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Apartments (see residential)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2. Access floor systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office use</td>
<td>50</td>
<td>2,000</td>
</tr>
<tr>
<td>Computer use</td>
<td>100</td>
<td>2,000</td>
</tr>
<tr>
<td>3. Armories and drill rooms</td>
<td>150</td>
<td>—</td>
</tr>
<tr>
<td>4. Assembly areas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed seats (fastened to floor)</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Follow spot, projections and control rooms</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Lobbies</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>Moveable seats</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>Stage floors</td>
<td>150</td>
<td>—</td>
</tr>
<tr>
<td>Platforms (assembly)</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>Other assembly areas</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>5. Balconies and decks&lt;sup&gt;a&lt;/sup&gt;</td>
<td>Same as occupancy served</td>
<td>—</td>
</tr>
<tr>
<td>6. Catwalks</td>
<td>40</td>
<td>300</td>
</tr>
<tr>
<td>7. Cornices</td>
<td>60</td>
<td>—</td>
</tr>
<tr>
<td>8. Corridors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First floor</td>
<td>100</td>
<td>Same as occupancy served except as indicated</td>
</tr>
<tr>
<td>Other floors</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>9. Dining rooms and restaurants</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>10. Dwellings (see residential)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>11. Elevator machine room grating</td>
<td>(on area of 2 inches by 2 inches)</td>
<td>— 300</td>
</tr>
<tr>
<td>12. Finish light floor plate construction</td>
<td>(on area of 1 inch by 1 inch)</td>
<td>— 200</td>
</tr>
<tr>
<td>13. Fire escapes</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>On single-family dwellings only</td>
<td>40</td>
<td>—</td>
</tr>
<tr>
<td>14. Garages (passenger vehicles only)</td>
<td>40&lt;sup&gt;a&lt;/sup&gt;</td>
<td>Note a</td>
</tr>
<tr>
<td>Trucks and buses</td>
<td>See Section 1607.7</td>
<td></td>
</tr>
<tr>
<td>15. Handrails, guards and grab bars</td>
<td>See Section 1607.8</td>
<td></td>
</tr>
<tr>
<td>16. Helipads</td>
<td>See Section 1607.6</td>
<td></td>
</tr>
<tr>
<td>17. Hospitals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corridors above first floor</td>
<td>80</td>
<td>1,000</td>
</tr>
<tr>
<td>Operating rooms, laboratories</td>
<td>60</td>
<td>1,000</td>
</tr>
<tr>
<td>Patient rooms</td>
<td>40</td>
<td>1,000</td>
</tr>
<tr>
<td>18. Hotels (see residential)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>19. Libraries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corridors above first floor</td>
<td>80</td>
<td>1,000</td>
</tr>
<tr>
<td>Reading rooms</td>
<td>60</td>
<td>1,000</td>
</tr>
<tr>
<td>Stack rooms</td>
<td>150&lt;sup&gt;a&lt;/sup&gt;</td>
<td>1,000</td>
</tr>
<tr>
<td>20. Manufacturing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy</td>
<td>250&lt;sup&gt;a&lt;/sup&gt;</td>
<td>3,000</td>
</tr>
<tr>
<td>Light</td>
<td>125&lt;sup&gt;a&lt;/sup&gt;</td>
<td>2,000</td>
</tr>
<tr>
<td>21. Marquees</td>
<td>75</td>
<td>—</td>
</tr>
<tr>
<td>22. Office buildings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corridors above first floor</td>
<td>80</td>
<td>—</td>
</tr>
<tr>
<td>File and computer rooms shall be designed for heavier loads based on anticipated occupancy</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Lobbies and first-floor corridors</td>
<td>100</td>
<td>2,000</td>
</tr>
<tr>
<td>Offices</td>
<td>50</td>
<td>2,000</td>
</tr>
</tbody>
</table>

---

<table>
<thead>
<tr>
<th>OCCUPANCY OR USE</th>
<th>UNIFORM (psf)</th>
<th>CONCENTRATED (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23. Penal institutions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell blocks</td>
<td>40</td>
<td>—</td>
</tr>
<tr>
<td>Corridors</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>24. Recreational uses:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bowling alleys, poolrooms and similar uses</td>
<td>75&lt;sup&gt;a&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td>Dance halls and ballrooms</td>
<td>100&lt;sup&gt;a&lt;/sup&gt;</td>
<td>—</td>
</tr>
<tr>
<td>Gymnasiums</td>
<td>100&lt;sup&gt;a&lt;/sup&gt;</td>
<td>—</td>
</tr>
<tr>
<td>Reviewing stands, grandstands and bleachers</td>
<td>100&lt;sup&gt;b&lt;/sup&gt;</td>
<td>—</td>
</tr>
<tr>
<td>Stadiaums and arenas with fixed seats (fastened to floor)</td>
<td>60&lt;sup&gt;a&lt;/sup&gt;</td>
<td>—</td>
</tr>
<tr>
<td>25. Residential</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One- and two-family dwellings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uninhabitable attics without storage&lt;sup&gt;c&lt;/sup&gt;</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Uninhabitable attics with storage&lt;sup&gt;d&lt;/sup&gt;</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Habitable attics and sleeping areas&lt;sup&gt;e&lt;/sup&gt;</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>All other areas</td>
<td>40</td>
<td>—</td>
</tr>
<tr>
<td>Hotels and multifamily dwellings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private rooms and corridors serving them</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Public rooms&lt;sup&gt;e&lt;/sup&gt; and corridors serving them</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>26. Roofs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All roof surfaces subject to maintenance workers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Awnings and canopies:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabric construction supported by a skeleton structure</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>All other construction</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Ordinary flat, pitched, and curved roofs (that are not occupiable)</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Where primary roof members are exposed to a work floor, at single panel point of lower chord of roof trusses or any point along primary structural members supporting roofs:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over manufacturing, storage warehouses, and repair garages</td>
<td>2,000</td>
<td></td>
</tr>
<tr>
<td>All other primary roof members</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Occupiable roofs:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof gardens</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Assembly areas</td>
<td>100&lt;sup&gt;a&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td>All other similar areas</td>
<td>Note 1</td>
<td>Note 1</td>
</tr>
<tr>
<td>27. Schools</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classrooms</td>
<td>40</td>
<td>1,000</td>
</tr>
<tr>
<td>Corridors above first floor</td>
<td>80</td>
<td>1,000</td>
</tr>
<tr>
<td>First-floor corridors</td>
<td>100</td>
<td>1,000</td>
</tr>
<tr>
<td>28. Scuttles, skylight ribs and accessible ceilings</td>
<td>—</td>
<td>200</td>
</tr>
<tr>
<td>29. Sidewalks, vehicular drive ways and yards, subject to tracking</td>
<td>250&lt;sup&gt;a&lt;/sup&gt;</td>
<td>8,000&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>30. Stairs and exits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One- and two-family dwellings</td>
<td>40</td>
<td>300&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>All other</td>
<td>100</td>
<td>300&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

---

31. Storage warehouses (shall be designed for heavier loads if required for anticipated storage): | |
| Heavy | 250<sup>a</sup> | — |
| Light | 125<sup>a</sup> | — |

(continued)
TABLE 1607.1—continued
MINIMUM UNIFORMLY DISTRIBUTED LIVE LOADS, \( L_u \), AND MINIMUM CONCENTRATED LIVE LOADS\(^a\)

<table>
<thead>
<tr>
<th>OCCUPANCY OR USE</th>
<th>UNIFORM (psf)</th>
<th>CONCENTRATED (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32. Stores</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First floor</td>
<td>100</td>
<td>1,000</td>
</tr>
<tr>
<td>Upper floors</td>
<td>75</td>
<td>1,000</td>
</tr>
<tr>
<td>Wholesale, all floors</td>
<td>125(^{th})</td>
<td>1,000</td>
</tr>
<tr>
<td>33. Vehicle barriers</td>
<td>See Section 1607.8.3</td>
<td></td>
</tr>
<tr>
<td>34. Walkways and elevated platforms (other than exitways)</td>
<td>60</td>
<td>—</td>
</tr>
<tr>
<td>35. Yards and terraces, pedestrians</td>
<td>100(^{th})</td>
<td>—</td>
</tr>
<tr>
<td>36. [OSHPD 2] Storage racks and wall-hung cabinets</td>
<td>Total loads(^b)</td>
<td>—</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 square inch = 645.16 mm\(^2\),
1 pound per square foot = 0.0479 kN/m\(^2\), 1 pound = 0.004448 kN,
1 pound per cubic foot = 16 kg/m\(^3\).

a. Floors in garages or portions of buildings used for the storage of motor vehicles shall be designed for the uniformly distributed live loads of Table 1607.1 or the following concentrated loads: (1) for garages restricted to passenger vehicles accommodating not more than nine passengers: 3,000 pounds acting on an area of 4.5 inches by 4.5 inches; (2) for mechanical parking structures without slab or deck that are used for storing passenger vehicles only, 2,250 pounds per wheel.

b. The loading applies to stack room floors that support nonmobile, double-faced library book stacks, subject to the following limitations:
   1. The nominal bookstack unit height shall not exceed 90 inches;
   2. The nominal shelf depth shall not exceed 12 inches for each face; and
   3. Parallel rows of double-faced book stacks shall be separated by aisles not less than 36 inches wide.

c. Design in accordance with ICC 300.
d. Other uniform loads in accordance with an approved method containing provisions for truck loadings shall also be considered where appropriate.
e. The concentrated wheel load shall be applied on an area of 4.5 inches by 4.5 inches.
f. The minimum concentrated load on stair treads shall be applied on an area of 2 inches by 2 inches. This load need not be assumed to act concurrently with the uniform load.
g. Where snow loads occur that are in excess of the design conditions, the structure shall be designed to support the loads due to the increased loads caused by drift buildup or a greater snow design determined by the building official (see Section 1608).
h. See Section 1604.8.3 for decks attached to exterior walls.
i. Uninhabitable attics without storage are those where the maximum clear height between the joists and rafters is less than 42 inches, or where there are not two or more adjacent trusses with web configurations capable of accommodating an assumed rectangle 42 inches in height by 24 inches in width, or greater, within the plane of the trusses. This live load need not be assumed to act concurrently with any other live load requirements.
j. Uninhabitable attics with storage are those where the maximum clear height between the joists and rafters is 42 inches or greater, or where there are two or more adjacent trusses with web configurations capable of accommodating an assumed rectangle 42 inches in height by 24 inches in width, or greater, within the plane of the trusses. The live load need only be applied to those portions of the joists or truss bottom chords where both of the following conditions are met:
   i. The attic area is accessible from an opening not less than 20 inches in width by 30 inches in length that is located where the clear height in the attic is a minimum of 30 inches; and
   ii. The slopes of the joists or truss bottom chords are no greater than two units vertical in 12 units horizontal.

The remaining portions of the joists or truss bottom chords shall be designed for a uniformly distributed concurrent live load of not less than 10 lb/ft\(^2\).
k. Attic spaces served by stairways other than the pull-down type shall be designed to support the minimum live load specified for habitable attics and sleeping rooms.

1607.5 Partition loads. In office buildings and in other buildings where partition locations are subject to change, provisions for partition weight shall be made, whether or not partitions are shown on the construction documents, unless the specified live load exceeds 80 psf (3.83 kN/m\(^2\)). The partition load shall not be less than a uniformly distributed live load of 15 psf (0.72 kN/m\(^2\)).

1607.6 Helipads. Helipads shall be designed for the following live loads:

1. A uniform live load, \( L \), as specified below. This load shall not be reduced.

1.1. 40 psf (1.92 kN/m\(^2\)) where the design basis helicopter has a maximum take-off weight of 3,000 pounds (13.35 kN) or less.

1.2. 60 psf (2.87 kN/m\(^2\)) where the design basis helicopter has a maximum take-off weight greater than 3,000 pounds (13.35 kN).

2. A single concentrated live load, \( L_c \), of 3,000 pounds (13.35 kN) applied over an area of 4.5 inches by 4.5 inches (114 mm by 114 mm) and located so as to produce the maximum load effects on the structural elements under consideration. The concentrated load is not required to act concurrently with other uniform or concentrated live loads.

3. Two single concentrated live loads, \( L_c \), 8 feet (2438 mm) apart applied on the landing pad (representing the helicopter’s two main landing gear, whether skid type or wheeled type), each having a magnitude of 0.75 times the maximum take-off weight of the helicopter, and located so as to produce the maximum load effects on the structural elements under consideration. The concentrated loads shall be applied over an area of 8 inches by 8 inches (203 mm by 203 mm) and are not required to act concurrently with other uniform or concentrated live loads.

Landing areas designed for a design basis helicopter with maximum take-off weight of 3,000 pounds (13.35 kN) shall be identified with a 3,000 pound (13.34 kN) weight limita-
1607.7 Heavy vehicle loads. Floors and other surfaces that are intended to support vehicle loads greater than a 10,000 pound (4536 kg) gross vehicle weight rating shall comply with Sections 1607.7.1 through 1607.7.5.

1607.7.1 Loads. Where any structure does not restrict access for vehicles that exceed a 10,000-pound (4536 kg) gross vehicle weight rating, those portions of the structure subject to such loads shall be designed using the vehicular live loads, including consideration of impact and fatigue, in accordance with the codes and specifications required by the jurisdiction having authority for the design and construction of the roadways and bridges in the same location of the structure.

1607.7.2 Fire truck and emergency vehicles. Where a structure or portions of a structure are accessed and loaded by fire department access vehicles and other similar emergency vehicles, the structure shall be designed for the greater of the following loads:

1. The actual operational loads, including outrigger reactions and contact areas of the vehicles as stipulated and approved by the building official; or
2. The live loading specified in Section 1607.7.1.

1607.7.3 Heavy vehicle garages. Garages designed to accommodate vehicles that exceed a 10,000 pound (4536 kg) gross vehicle weight rating, shall be designed using the live loading specified by Section 1607.7.1. For garages the design for impact and fatigue is not required.

Exception: The vehicular live loads and load placement are allowed to be determined using the actual vehicle weights for the vehicles allowed onto the garage floors, provided such loads and placement are based on rational engineering principles and are approved by the building official, but shall not be less than 50 psf (2.9 kN/m²).

This live load shall not be reduced.

1607.7.4 Forklifts and movable equipment. Where a structure is intended to have forklifts or other movable equipment present, the structure shall be designed for the total vehicle or equipment load and the individual wheel loads for the anticipated vehicles as specified by the owner of the facility. These loads shall be posted per Section 1607.7.5.

1607.7.4.1 Impact and fatigue. Impact loads and fatigue-loading shall be considered in the design of the supporting structure. For the purposes of design, the vehicle and wheel loads shall be increased by 30 percent to account for impact.

1607.7.5 Posting. The maximum weight of the vehicles allowed into or on a garage or other structure shall be posted by the owner in accordance with Section 106.1.

1607.8 Loads on handrails, guards, grab bars, shower seats, dressing room bench seats and vehicle barriers.

1607.8.1 Handrails and guards. Handrails and guards shall be designed to resist a linear load of 50 pounds per linear foot (0.73 kN/m) in accordance with Section 4.5.1 of ASCE 7. Glass handrail assemblies and guards shall also comply with Section 2407.

Exceptions:
1. For one- and two-family dwellings, only the single concentrated load required by Section 1607.8.1.1 shall be applied.
2. In Group I-3, F, H and S occupancies, for areas that are not accessible to the general public and that have an occupant load less than 50, the minimum load shall be 20 pounds per foot (0.29 kN/m).

1607.8.1.1 Concentrated load. Handrails and guards shall also be designed to resist a concentrated load of 200 pounds (0.89 kN) in accordance with Section 4.5.1 of ASCE 7.

1607.8.1.2 Intermediate rails. Intermediate rails (all those except the handrail), balusters and panel fillers shall be designed to resist a concentrated load of 50 pounds (0.22 kN) in accordance with Section 4.5.1 of ASCE 7.

1607.8.2 Grab bars, shower seats and dressing room bench seats. Grab bars, shower seats and dressing room bench seat systems shall be designed to resist a single concentrated load of 250 pounds (1.11 kN) applied in any direction at any point on the grab bar or seat so as to produce the maximum load effects. (DSA-AC & HCD J-AC)

See Chapter 11A, Section 1127A.4, Chapter 11B, Sections 11B-609.8, 11B-610.4 and 11B-903.6 for grab bars, shower seats and dressing room bench seats, as applicable.

1607.8.3 Vehicle barriers. Vehicle barriers for passenger vehicles shall be designed to resist a concentrated load of 6,000 pounds (26.70 kN) in accordance with Section 4.5.3 of ASCE 7. Garages accommodating trucks and buses shall be designed in accordance with an approved method that contains provisions for traffic railings.

1607.9 Impact loads. The live loads specified in Sections 1607.3 through 1607.8 shall be assumed to include adequate allowance for ordinary impact conditions. Provisions shall be made in the structural design for uses and loads that involve unusual vibration and impact forces.

1607.9.1 Elevators. Members, elements and components subject to dynamic loads from elevators shall be designed for impact loads and deflection limits prescribed by ASME A17.1.

1607.9.2 Machinery. For the purpose of design, the weight of machinery and moving loads shall be increased as follows to allow for impact: (1) light machinery, shaft- or motor-driven, 20 percent; and (2) reciprocating machinery or power-driven units, 50 percent. Percentages shall be increased where specified by the manufacturer.
1607.10 Reduction in uniform live loads. Except for uniform live loads at roofs, all other minimum uniformly distributed live loads, \( L_o \), in Table 1607.1 are permitted to be reduced in accordance with Section 1607.10.1 or 1607.10.2. Uniform live loads at roofs are permitted to be reduced in accordance with Section 1607.12.2.

1607.10.1 Basic uniform live load reduction. Subject to the limitations of Sections 1607.10.1.1 through 1607.10.1.3 and Table 1607.1, members for which a value of \( K_{LL} A_T \) is 400 square feet (37.16 m\(^2\)) or more are permitted to be designed for a reduced uniformly distributed live load, \( L \), in accordance with the following equation:

\[
L = L_o \left( 0.25 + \frac{15}{\sqrt{K_{LL} A_T}} \right)
\]

(Equation 16-23)

For SI:

\[
L = L_o \left( 0.25 + \frac{4.57}{\sqrt{K_{LL} A_T}} \right)
\]

where:

\( L = \) Reduced design live load per square foot (m\(^2\)) of area supported by the member.

\( L_o = \) Unreduced design live load per square foot (m\(^2\)) of area supported by the member (see Table 1607.1).

\( K_{LL} = \) Live load element factor (see Table 1607.10.1).

\( A_T = \) Tributary area, in square feet (m\(^2\)).

\( L \) shall not be less than \( 0.50 L_o \) for members supporting one floor and \( L \) shall not be less than \( 0.40 L_o \) for members supporting two or more floors.

| TABLE 1607.10.1 LIVE LOAD ELEMENT FACTOR, \( K_{LL} \) |
|-----------------|-----|
| ELEMENT | \( K_{LL} \) |
| Interior columns | 4 |
| Exterior columns without cantilever slabs | 4 |
| Edge columns with cantilever slabs | 3 |
| Corner columns with cantilever slabs | 2 |
| Edge beams without cantilever slabs | 2 |
| Interior beams | 2 |
| All other members not identified above including: | |
| Edge beams with cantilever slabs | 1 |
| Cantilever beams | |
| One-way slabs | |
| Two-way slabs | |
| Members without provisions for continuous shear transfer normal to their span | |

1607.10.1.1 One-way slabs. The tributary area, \( A_T \), for use in Equation 16-23 for one-way slabs shall not exceed an area defined by the slab span times a width normal to the span of 1.5 times the slab span.

1607.10.1.2 Heavy live loads. Live loads that exceed 100 psf (4.79 kN/m\(^2\)) shall not be reduced.

Exceptions:

1. The live loads for members supporting two or more floors are permitted to be reduced by a maximum of 20 percent, but the live load shall not be less than \( L \) as calculated in Section 1607.10.1.

2. For uses other than storage, where approved, additional live load reductions shall be permitted where shown by the registered design professional that a rational approach has been used and that such reductions are warranted.

1607.10.1.3 Passenger vehicle garages. The live loads shall not be reduced in passenger vehicle garages.

Exception: The live loads for members supporting two or more floors are permitted to be reduced by a maximum of 20 percent, but the live load shall not be less than \( L \) as calculated in Section 1607.10.1.

1607.10.2 Alternative uniform live load reduction. As an alternative to Section 1607.10.1 and subject to the limitations of Table 1607.1, uniformly distributed live loads are permitted to be reduced in accordance with the following provisions. Such reductions shall apply to slab systems, beams, girders, columns, piers, walls and foundations.

1. A reduction shall not be permitted where the live load exceeds 100 psf (4.79 kN/m\(^2\)) except that the design live load for members supporting two or more floors is permitted to be reduced by a maximum of 20 percent.

   Exception: For uses other than storage, where approved, additional live load reductions shall be permitted where shown by the registered design professional that a rational approach has been used and that such reductions are warranted.

2. A reduction shall not be permitted in passenger vehicle parking garages except that the live loads for members supporting two or more floors are permitted to be reduced by a maximum of 20 percent.

3. For live loads not exceeding 100 psf (4.79 kN/m\(^2\)), the design live load for any structural member supporting 150 square feet (13.94 m\(^2\)) or more is permitted to be reduced in accordance with Equation 16-24.

4. For one-way slabs, the area, \( A \), for use in Equation 16-24 shall not exceed the product of the slab span and a width normal to the span of 0.5 times the slab span.

\[
R = 0.08(A – 150)
\]

(Equation 16-24)

For SI: \( R = 0.861(A – 13.94) \)

Such reduction shall not exceed the smallest of:

1. 40 percent for horizontal members;
2. 60 percent for vertical members; or
3. \( R \) as determined by the following equation.

\[
R = 23.1(1 + \frac{D}{L_o})
\]

(Equation 16-25)

where:

\( A = \) Area of floor supported by the member, square feet (m\(^2\)).
STRUCTURAL DESIGN

\[ D = \text{Dead load per square foot (m}^2\text{) of area supported.} \]

\[ L_u = \text{Unreduced live load per square foot (m}^2\text{) of area supported.} \]

\[ R = \text{Reduction in percent.} \]

**1607.11 Distribution of floor loads.** Where uniform floor live loads are involved in the design of structural members arranged so as to create continuity, the minimum applied loads shall be the full dead loads on all spans in combination with the floor live loads on spans selected to produce the greatest load effect at each location under consideration. Floor live loads are permitted to be reduced in accordance with Section 1607.10.

**1607.12 Roof loads.** The structural supports of roofs and marquees shall be designed to resist wind and, where applicable, snow and earthquake loads, in addition to the dead load of construction and the appropriate live loads as prescribed in this section, or as set forth in Table 1607.1. The live loads acting on a sloping surface shall be assumed to act vertically on the horizontal projection of that surface.

**1607.12.1 Distribution of roof loads.** Where uniform roof live loads are reduced to less than 20 psf (0.96 kN/m²) in accordance with Section 1607.12.2.1 and are applied to the design of structural members arranged so as to create continuity, the reduced roof live load shall be applied to adjacent spans or to alternate spans, whichever produces the most unfavorable load effect. See Section 1607.12.2 for reductions in minimum roof live loads and Section 7.5 of ASCE 7 for partial snow loading.

**1607.12.2 General.** The minimum uniformly distributed live loads of roofs and marquees, \( L_u \), in Table 1607.1 are permitted to be reduced in accordance with Section 1607.12.2.1.

**1607.12.2.1 Ordinary roofs, awnings and canopies.** Ordinary flat, pitched and curved roofs, and awnings and canopies other than of fabric construction supported by a skeleton structure, are permitted to be designed for a reduced uniformly distributed roof live load, \( L_u \), as specified in the following equations or other controlling combinations of loads as specified in Section 1605, whichever produces the greater load effect.

In structures such as greenhouses, where special scaffolding is used as a work surface for workers and materials during maintenance and repair operations, a lower roof load than specified in the following equations shall not be used unless approved by the building official. Such structures shall be designed for a minimum roof live load of 12 psf (0.58 kN/m²).

\[ L_u = L_o R R_2 \]  \hspace{1cm} \text{(Equation 16-26)}

where: \( 12 \leq L_o \leq 20 \)

For SI: \( L_o = L_o R R_2 \)

where: \( 0.58 \leq L_o \leq 0.96 \)

\[ L_o = \text{Unreduced roof live load per square foot (m}^2\text{) of horizontal projection supported by the member (see Table 1607.1).} \]

\[ L_o = \text{Reduced roof live load per square foot (m}^2\text{) of horizontal projection supported by the member.} \]

The reduction factors \( R_1 \) and \( R_2 \) shall be determined as follows:

\[ R_1 = 1 \text{ for } A_o \leq 200 \text{ square feet (18.58 m}^2) \]  \hspace{1cm} \text{(Equation 16-27)}

\[ R_1 = 1.2 - 0.001 A_o \text{ for } 200 < A_o < 600 \text{ square feet} \]  \hspace{1cm} \text{(Equation 16-28)}

For SI: \[ R_1 = 1.2 - 0.011 A_o \text{ for } 18.58 < A_o < 55.74 \text{ square meters} \]  \hspace{1cm} \text{(Equation 16-29)}

where:

\[ A_o = \text{Tributary area (span length multiplied by effective width) in square feet (m}^2\text{) supported by the member, and} \]

\[ R_2 = 1 \text{ for } F \leq 4 \]  \hspace{1cm} \text{(Equation 16-30)}

\[ R_2 = 1.2 - 0.05 F \text{ for } 4 < F < 12 \]  \hspace{1cm} \text{(Equation 16-31)}

\[ R_2 = 0.6 \text{ for } F \geq 12 \]  \hspace{1cm} \text{(Equation 16-32)}

where:

\[ F = \text{For a sloped roof, the number of inches of rise per foot (for SI: } F = 0.12 \times \text{ slope, with slope expressed as a percentage), or for an arch or dome, the rise-to-span ratio multiplied by 32.} \]

**1607.12.3 Occupiable roofs.** Areas of roofs that are occupiable, such as roof gardens, or for assembly or other similar purposes, and marquees are permitted to have their uniformly distributed live loads reduced in accordance with Section 1607.10.

**1607.12.3.1 Landscaped roofs.** The uniform design live load in unoccupied landscaped areas on roofs shall be 20 psf (0.958 kN/m²). The weight of all landscaping materials shall be considered as dead load and shall be computed on the basis of saturation of the soil.

**1607.12.4 Awnings and canopies.** Awnings and canopies shall be designed for uniform live loads as required in Table 1607.1 as well as for snow loads and wind loads as specified in Sections 1608 and 1609.

**1607.13 Crane loads.** The crane live load shall be the rated capacity of the crane. Design loads for the runway beams, including connections and support brackets, of moving bridge cranes and monorail cranes shall include the maximum wheel loads of the crane and the vertical impact, lateral and longitudinal forces induced by the moving crane.

**1607.13.1 Maximum wheel load.** The maximum wheel loads shall be the wheel loads produced by the weight of the bridge, as applicable, plus the sum of the rated capacity and the weight of the trolley with the trolley positioned on its runway at the location where the resulting load effect is maximum.

**1607.13.2 Vertical impact force.** The maximum wheel loads of the crane shall be increased by the percentages
shown below to determine the induced vertical impact or vibration force:

- Monorail cranes (powered) ........................................ 25 percent
- Cab-operated or remotely operated bridge cranes (powered) ........................................ 25 percent
- Pendant-operated bridge cranes (powered) ........................................ 10 percent
- Bridge cranes or monorail cranes with hand-geared bridge, trolley and hoist ........... 0 percent

**1607.13.3 Lateral force.** The lateral force on crane runway beams with electrically powered trolleys shall be calculated as 20 percent of the sum of the rated capacity of the crane and the weight of the hoist and trolley. The lateral force shall be assumed to act horizontally at the traction surface of a runway beam, in either direction perpendicular to the beam, and shall be distributed with due regard to the lateral stiffness of the runway beam and supporting structure.

**1607.13.4 Longitudinal force.** The longitudinal force on crane runway beams, except for bridge cranes with hand-geared bridges, shall be calculated as 10 percent of the maximum wheel loads of the crane. The longitudinal force shall be assumed to act horizontally at the traction surface of a runway beam, in either direction parallel to the beam.

**1607.14 Interior walls and partitions.** Interior walls and partitions that exceed 6 feet (1829 mm) in height, including their finish materials, shall have adequate strength to resist the loads to which they are subjected but not less than a horizontal load of 5 psf (0.240 kN/m²).

**Exception:** Fabric partitions complying with Section 1607.14.1 shall not be required to resist the minimum horizontal load of 5 psf (0.24 kN/m²).

**1607.14.1 Fabric partitions.** Fabric partitions that exceed 6 feet (1829 mm) in height, including their finish materials, shall have adequate strength to resist the following load conditions:

1. A horizontal distributed load of 5 psf (0.24 kN/m²) applied to the partition framing. The total area used to determine the distributed load shall be the area of the fabric face between the framing members to which the fabric is attached. The total distributed load shall be uniformly applied to such framing members in proportion to the length of each member.
2. A concentrated load of 40 pounds (0.176 kN) applied to an 8-inch diameter (203 mm) area (50.3 square inches (32452 mm²)) of the fabric face at a height of 54 inches (1372 mm) above the floor.

**SECTION 1608 SNOW LOADS**

**1608.1 General.** Design snow loads shall be determined in accordance with Chapter 7 of ASCE 7, but the design roof load shall not be less than that determined by Section 1607.

**1608.2 Ground snow loads.** The ground snow loads to be used in determining the design snow loads for roofs shall be determined in accordance with ASCE 7 or Figure 1608.2 for the contiguous United States and Table 1608.2 for Alaska. Site-specific case studies shall be made in areas designated “CS” in Figure 1608.2. Ground snow loads for sites at elevations above the limits indicated in Figure 1608.2 and for all sites within the CS areas shall be approved. Ground snow load determination for such sites shall be based on an extreme value statistical analysis of data available in the vicinity of the site using a value with a 2-percent annual probability of being exceeded (50-year mean recurrence interval). Snow loads are zero for Hawaii, except in mountainous regions as approved by the building official.

**1608.3 Ponding instability.** Susceptible bays of roofs shall be evaluated for ponding instability in accordance with Section 7.11 of ASCE 7.

| TABLE 1608.2 GROUND SNOW LOADS, p g, FOR ALASKAN LOCATIONS |
|-----------------|---------------|----------------|-----------------|----------------|
| LOCATION        | POUNDS PER SQUARE FOOT | LOCATION       | POUNDS PER SQUARE FOOT | LOCATION       | POUNDS PER SQUARE FOOT |
| Adak            | 30             | Galena         | 60              | Petersburg     | 150              |
| Anchorage       | 50             | Gulkana        | 70              | St. Paul Islands | 40               |
| Angoon          | 70             | Homer          | 40              | Seward         | 50               |
| Barrow          | 25             | Juneau         | 60              | Shemya         | 25               |
| Barter Island   | 35             | Kenai          | 70              | Sitka          | 50               |
| Bethel          | 40             | Kodiak         | 30              | Talkeetna      | 120              |
| Big Delta       | 50             | Kotzebue       | 60              | Unalakleet     | 50               |
| Cold Bay        | 25             | McGrath        | 70              | Valdez         | 160              |
| Cordova         | 100            | Nenana         | 80              | Whittier       | 300              |
| Fairbanks       | 60             | Nome           | 70              | Wrangell       | 60               |
| Fort Yukon      | 60             | Palmer         | 50              | Yakutat        | 150              |

For SI: 1 pound per square foot = 0.0479 kN/m².
In CS areas, site-specific Case Studies are required to establish ground snow loads. Extreme local variations in ground snow loads in these areas preclude mapping at this scale.

Numbers in parentheses represent the upper elevation limits in feet for the ground snow load values presented below. Site-specific case studies are required to establish ground snow loads at elevations not covered.

To convert lb/sq ft to kN/m², multiply by 0.0479.

To convert feet to meters, multiply by 0.3048.
FIGURE 1608.2—continued
GROUND SNOW LOADS, $p_g$ FOR THE UNITED STATES (psf)
SECTION 1609
WIND LOADS

1609.1 Applications. Buildings, structures and parts thereof shall be designed to withstand the minimum wind loads prescribed herein. Decreases in wind loads shall not be made for the effect of shielding by other structures.

1609.1.1 Determination of wind loads. Wind loads on every building or structure shall be determined in accordance with Chapters 26 to 30 of ASCE 7 or provisions of the alternate all-heights method in Section 1609.6. The type of opening protection required, the ultimate design wind speed, $V_{ul}$, and the exposure category for a site is permitted to be determined in accordance with Section 1609 or ASCE 7. Wind shall be assumed to come from any horizontal direction and wind pressures shall be assumed to act normal to the surface considered.

Exceptions:

1. Subject to the limitations of Section 1609.1.1.1, the provisions of ICC 600 shall be permitted for applicable Group R-2 and R-3 buildings.
2. Subject to the limitations of Section 1609.1.1.1, residential structures using the provisions of AF&PA WFCM.
3. Subject to the limitations of Section 1609.1.1.1, residential structures using the provisions of AISI S230.
5. Designs using TIA-222 for antenna-supporting structures and antennas, provided the horizontal extent of Topographic Category 2 escarpments in Section 2.6.6.2 of TIA-222 shall be 16 times the height of the escarpment.
6. Wind tunnel tests in accordance with Chapter 31 of ASCE 7.

The wind speeds in Figures 1609A, 1609B and 1609C are ultimate design wind speeds, $V_{ul}$, and shall be converted in accordance with Section 1609.3.1 to nominal design wind speeds, $V_{n,ul}$, when the provisions of the standards referenced in Exceptions 1 through 5 are used.

1609.1.1.1 Applicability. The provisions of ICC 600 are applicable only to buildings located within Exposure B or C as defined in Section 1609.4. The provisions of ICC 600, AF&PA WFCM and AISI S230 shall not apply to buildings sited on the upper half of an isolated hill, ridge or escarpment meeting the following conditions:

1. The hill, ridge or escarpment is 60 feet (18 288 mm) or higher if located in Exposure B or 30 feet (9144 mm) or higher if located in Exposure C;
2. The maximum average slope of the hill exceeds 10 percent; and
3. The hill, ridge or escarpment is unobstructed upwind by other such topographic features for a distance from the high point of 50 times the height of the hill or 1 mile (1.61 km), whichever is greater.

1609.1.2 Protection of openings. In wind-borne debris regions, glazing in buildings shall be impact resistant or protected with an impact-resistant covering meeting the requirements of an approved impact-resistant standard or ASTM E 1996 and ASTM E 1886 referenced herein as follows:

1. Glazed openings located within 30 feet (9144 mm) of grade shall meet the requirements of the large missile test of ASTM E 1996.
2. Glazed openings located more than 30 feet (9144 mm) above grade shall meet the provisions of the small missile test of ASTM E 1996.

Exceptions:

1. Wood structural panels with a minimum thickness of $\frac{7}{64}$ inch (11.1 mm) and maximum panel span of 8 feet (2438 mm) shall be permitted for opening protection in one- and two-story buildings classified as Group R-3 or R-4 occupancy. Panels shall be precut so that they shall be attached to the framing surrounding the opening containing the product with the glazed opening. Panels shall be predrilled as required for the anchorage method and shall be secured with the attachment hardware provided. Attachments shall be designed to resist the components and cladding loads determined in accordance with the provisions of ASCE 7, with corrosion-resistant attachment hardware provided and anchors permanently installed on the building. Attachment in accordance with Table 1609.1.2 with corrosion-resistant attachment hardware provided and anchors permanently installed on the building is permitted for buildings with a mean roof height of 45 feet (13 716 mm) or less where $V_{ul}$ determined in accordance with Section 1609.3.1 does not exceed 140 mph (63 m/s).
2. Glazing in Risk Category I buildings as defined in Section 1604.5, including greenhouses that are occupied for growing plants on a production or research basis, without public access shall be permitted to be unprotected.
3. Glazing in Risk Category II, III or IV buildings located over 60 feet (18 288 mm) above the ground and over 30 feet (9144 mm) above aggregate surface roofs located within 1,500 feet (458 m) of the building shall be permitted to be unprotected.

1609.1.2.1 Louvers. Louvers protecting intake and exhaust ventilation ducts not assumed to be open that are located within 30 feet (9144 mm) of grade shall meet the requirements of AMCA 54.
**TABLE 1609.1.2 WIND-BORNE DEBRIS PROTECTION FASTENING SCHEDULE FOR WOOD STRUCTURAL PANELS**

<table>
<thead>
<tr>
<th>FASTENER TYPE</th>
<th>FASTENER SPACING (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Panel Span ≤ 4 feet</td>
</tr>
<tr>
<td>No. 8 wood-screw-based anchor with 2-inch embedment length</td>
<td>16</td>
</tr>
<tr>
<td>No. 10 wood-screw-based anchor with 2-inch embedment length</td>
<td>16</td>
</tr>
<tr>
<td>1/4-inch diameter lag-screw-based anchor with 2-inch embedment length</td>
<td>16</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound = 4.448 N, 1 mile per hour = 0.447 m/s.

6.2.2.4 *Wind Zone 4*— ultimate design wind speed, \( V_{sd} > 160 \text{ mph} \) (63 m/s).

1609.1.2.3 *Garage doors.* Garage door glazed opening protection for wind-borne debris shall meet the requirements of an approved impact-resisting standard or ANSI/DASMA 115.

1609.2 Definitions. For the purposes of Section 1609 and as used elsewhere in this code, the following terms are defined in Chapter 2.

**HURRICANE-PRONE REGIONS. WIND-BORNE DEBRIS REGION.**

**WIND SPEED, \( V_{sd} \).**

**WIND SPEED, \( V_{sa} \).**

1609.3 *Basic wind speed.* The ultimate design wind speed, \( V_{sd} \), is estimated from regional climatic data, the ultimate design wind speed, \( V_{sa} \), shall be determined in accordance with Section 26.5.1 of ASCE 7.

In nonhurricane-prone regions, when the ultimate design wind speed, \( V_{sa} \), is estimated from regional climatic data, the ultimate design wind speed, \( V_{sa} \), shall be determined in accordance with Section 26.5.3 of ASCE 7.

1609.3.1 *Wind speed conversion.* When required, the ultimate design wind speeds of Figures 1609A, 1609B and 1609C shall be converted to nominal design wind speeds, \( V_{sd} \), using Table 1609.3.1 or Equation 16-33.

\[
V_{sa} = V_{sd} / \sqrt{0.6}
\]

(Equation 16-33)

where:

- \( V_{sa} \) = nominal design wind speed applicable to methods specified in Exceptions 1 through 5 of Section 1609.1.1.
- \( V_{sa} \) = ultimate design wind speeds determined from Figures 1609A, 1609B, or 1609C.

**TABLE 1609.3.1 WIND SPEED CONVERSIONS**

<table>
<thead>
<tr>
<th>( V_{sa} )</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
<th>140</th>
<th>150</th>
<th>160</th>
<th>170</th>
<th>180</th>
<th>190</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>( V_{sd} )</td>
<td>78</td>
<td>85</td>
<td>93</td>
<td>101</td>
<td>108</td>
<td>116</td>
<td>124</td>
<td>132</td>
<td>139</td>
<td>147</td>
<td>155</td>
</tr>
</tbody>
</table>

For SI: 1 mile per hour = 0.44 m/s.

- a. Linear interpolation is permitted.
- b. \( V_{sa} \) = nominal design wind speed applicable to methods specified in Exceptions 1 through 5 of Section 1609.1.1.
- c. \( V_{sa} \) = ultimate design wind speeds determined from Figures 1609A, 1609B, or 1609C.
FIGURE 1609A
ULTIMATE DESIGN WIND SPEEDS, $V_{UL,P}$ FOR RISK CATEGORY II BUILDINGS AND OTHER STRUCTURES

Notes:
1. Values are nominal design 3-second gust wind speeds in miles per hour (m/s) at 33 ft (10m) above ground for Exposure C category.
2. Linear interpolation between contours is permitted.
3. Islands and coastal areas outside the last contour shall use the last wind speed contour of the coastal area.
4. Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.
5. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (Annual Exceedance Probability = 0.00143, MRI = 700 Years).
FIGURE 1609B
ULTIMATE DESIGN WIND SPEEDS, $V_{u,p}$, FOR RISK CATEGORY III AND IV BUILDINGS AND OTHER STRUCTURES

Notes:
1. Values are nominal design 3-second gust wind speeds in miles per hour (m/s) at 33 ft (10m) above ground for Exposure C category.
2. Linear interpolation between contours is permitted.
3. Islands and coastal areas outside the last contour shall use the last wind speed contour of the coastal area.
4. Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.
5. Wind speeds correspond to approximately a 3% probability of exceedance in 50 years (Annual Exceedance Probability = 0.000588, MRI = 1700 Years).
Notes:
1. Values are nominal design 3-second gust wind speeds in miles per hour (m/s) at 33 ft (10m) above ground for Exposure C category.
2. Linear interpolation between contours is permitted.
3. Islands and coastal areas outside the last contour shall use the last wind speed contour of the coastal area.
4. Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.
5. Wind speeds correspond to approximately a 15% probability of exceedance in 50 years (Annual Exceedance Probability = 0.00333, MRI = 300 Years).

FIGURE 1609C
ULTIMATE DESIGN WIND SPEEDS, $V_{UL71}$ FOR RISK CATEGORY I BUILDINGS AND OTHER STRUCTURES
1609.4 Exposure category. For each wind direction considered, an exposure category that adequately reflects the characteristics of ground surface irregularities shall be determined for the site at which the building or structure is to be constructed. Account shall be taken of variations in ground surface roughness that arise from natural topography and vegetation as well as from constructed features.

1609.4.1 Wind directions and sectors. For each selected wind direction at which the wind loads are to be evaluated, the exposure of the building or structure shall be determined for the two upwind sectors extending 45 degrees (0.79 rad) either side of the selected wind direction. The exposures in these two sectors shall be determined in accordance with Sections 1609.4.2 and 1609.4.3 and the exposure resulting in the highest wind loads shall be used to represent winds from that direction.

1609.4.2 Surface roughness categories. A ground surface roughness within each 45-degree (0.79 rad) sector shall be determined for a distance upwind of the site as defined in Section 1609.4.3 from the categories defined below, for the purpose of assigning an exposure category as defined in Section 1609.4.3.

- **Surface Roughness B.** Urban and suburban areas, wooded areas or other terrain with numerous closely spaced obstructions having the size of single-family dwellings or larger.

- **Surface Roughness C.** Open terrain with scattered obstructions having heights less than 30 feet (9144 mm). This category includes flat open country, and grasslands.

- **Surface Roughness D.** Flat, unobstructed areas and water surfaces. This category includes smooth mud flats, salt flats and unbroken ice.

1609.4.3 Exposure categories. An exposure category shall be determined in accordance with the following:

- **Exposure B.** For buildings with a mean roof height of less than or equal to 30 feet (9144 mm), Exposure B shall apply where the ground surface roughness, as defined by Surface Roughness B, prevails in the upwind direction for a distance of at least 1,500 feet (457 m). For buildings with a mean roof height greater than 30 feet (9144 mm), Exposure B shall apply where Surface Roughness B prevails in the upwind direction for a distance of at least 2,600 feet (792 m) or 20 times the height of the building, whichever is greater.

- **Exposure C.** Exposure C shall apply for all cases where Exposures B or D do not apply.

- **Exposure D.** Exposure D shall apply where the ground surface roughness, as defined by Surface Roughness D, prevails in the upwind direction for a distance of at least 5,000 feet (1524 m) or 20 times the height of the building, whichever is greater. Exposure D shall also apply where the ground surface roughness immediately upwind of the site is B or C, and the site is within a distance of 600 feet (183 m) or 20 times the building height, whichever is greater, from an exposure D condition as defined in the previous sentence.

1609.5 Roof systems. Roof systems shall be designed and constructed in accordance with Sections 1609.5.1 through 1609.5.3, as applicable.

1609.5.1 Roof deck. The roof deck shall be designed to withstand the wind pressures determined in accordance with ASCE 7.

1609.5.2 Roof coverings. Roof coverings shall comply with Section 1609.5.1.

**Exception:** Rigid tile roof coverings that are air permeable and installed over a roof deck complying with Section 1609.5.1 are permitted to be designed in accordance with Section 1609.5.3.

Asphalt shingles installed over a roof deck complying with Section 1609.5.1 shall comply with the wind-resistance requirements of Section 1507.2.7.1.

1609.5.3 Rigid tile. Wind loads on rigid tile roof coverings shall be determined in accordance with the following equation:

\[ M = q_C b L L_a \left[ 1.0 - \frac{G_C}{1000} \right] \]  
(Equation 16-34)

For SI:

\[ M = \frac{q_C b L L_a \left( 1.0 - \frac{G_C}{1000} \right)}{1000} \]

where:

- \( b \) = Exposed width, feet (mm) of the roof tile.
- \( q_C \) = Lift coefficient. The lift coefficient for concrete and clay tile shall be 0.2 or shall be determined by test in accordance with Section 1711.2.
- \( G_C \) = Roof pressure coefficient for each applicable roof zone determined from Chapter 30 of ASCE 7. Roof coefficients shall not be adjusted for internal pressure.
- \( L \) = Length, feet (mm) of the roof tile.
- \( L_a \) = Moment arm, feet (mm) from the axis of rotation to the point of uplift on the roof tile. The point of uplift shall be taken at 0.76\( L \) from the head of the tile and the middle of the exposed width. For roof tiles with nails or screws (with or without a tail clip), the axis of rotation shall be taken as the head of the tile for direct deck application or as the top edge of the batten for battened applications. For roof tiles fastened only by a nail or screw along the side of the tile, the axis of rotation shall be determined by testing. For roof tiles installed with battens and fastened only by a clip near the tail of the tile, the moment arm shall be determined about the top edge of the batten with consideration given for the point of rotation of the tiles based on straight bond or broken bond and the tile profile.

\[ M = \text{Aerodynamic uplift moment, feet-pounds (N-mm)} \]
acting to raise the tail of the tile.
$q_w = \text{Wind velocity pressure, psf (kN/m}^2\text{) determined from Section 27.3.2 of ASCE 7.}$

Concrete and clay roof tiles complying with the following limitations shall be designed to withstand the aerodynamic uplift moment as determined by this section.

1. The roof tiles shall be either loose laid on battens, mechanically fastened, mortar set or adhesive set.
2. The roof tiles shall be installed on solid sheathing which has been designed as components and cladding.
3. An underlayment shall be installed in accordance with Chapter 15.
4. The tile shall be single lapped interlocking with a minimum head lap of not less than 2 inches (51 mm).
5. The length of the tile shall be between 1.0 and 1.75 feet (305 mm and 533 mm).
6. The exposed width of the tile shall be between 0.67 and 1.25 feet (204 mm and 381 mm).
7. The maximum thickness of the tail of the tile shall not exceed 1.3 inches (33 mm).
8. Roof tiles using mortar set or adhesive set systems shall have at least two-thirds of the tile’s area free of mortar or adhesive contact.

1609.6 Alternate all-heights method. The alternate wind design provisions in this section are simplifications of the ASCE 7 Directional Procedure.

1609.6.1 Scope. As an alternative to ASCE 7 Chapters 27 and 30, the following provisions are permitted to be used to determine the wind effects on regularly shaped buildings, or other structures that are regularly shaped, which meet all of the following conditions:

1. The building or other structure is less than or equal to 75 feet (22 860 mm) in height with a height-to-least-width ratio of 4 or less, or the building or other structure has a fundamental frequency greater than or equal to 1 hertz.
2. The building or other structure is not sensitive to dynamic effects.
3. The building or other structure is not located on a site for which channeling effects or buffeting in the wake of upwind obstructions warrant special consideration.
4. The building shall meet the requirements of a simple diaphragm building as defined in ASCE 7 Section 26.2, where wind loads are only transmitted to the main windforce-resisting system (MWFRS) at the diaphragms.
5. For open buildings, multispan gable roofs, stepped roofs, sawtooth roofs, domed roofs, roofs with slopes greater than 45 degrees (0.79 rad), solid free-standing walls and solid signs, and rooftop equipment, apply ASCE 7 provisions.

1609.6.1.1 Modifications. The following modifications shall be made to certain subsections in ASCE 7: in Section 1609.6.2, symbols and notations that are specific to this section are used in conjunction with the symbols and notations in ASCE 7 Section 26.3.

1609.6.2 Symbols and notations. Coefficients and variables used in the alternative all-heights method equations are as follows:

- $C_{net} =$ Net-pressure coefficient based on $K_d \lbrack (G) (C_p) \rbrack$, in accordance with Table 1609.6.2.
- $G =$ Gust effect factor for rigid structures in accordance with ASCE 7 Section 26.9.1.
- $K_d =$ Wind directionality factor in accordance with ASCE 7 Table 26-6.
- $P_{net} =$ Design wind pressure to be used in determination of wind loads on buildings or other structures or their components and cladding, in psf (kN/m²).

1609.6.3 Design equations. When using the alternative all-heights method, the MWFRS, and components and cladding of every structure shall be designed to resist the effects of wind pressures on the building envelope in accordance with Equation 16-35.

$$P_{net} = 0.00256V^2K_dC_{net}K_z$$ (Equation 16-35)

Design wind forces for the MWFRS shall not be less than 16 psf (0.77 kN/m²) multiplied by the area of the structure projected on a plane normal to the assumed wind direction (see ASCE 7 Section 27.4.7 for criteria). Design net wind pressure for components and cladding shall not be less than 16 psf (0.77 kN/m²) acting in either direction normal to the surface.

1609.6.4 Design procedure. The MWFRS and the components and cladding of every building or other structure shall be designed for the pressures calculated using Equation 16-35.

1609.6.4.1 Main windforce-resisting systems. The MWFRS shall be investigated for the torsional effects identified in ASCE 7 Figure 27.4.6.

1609.6.4.2 Determination of $K_i$ and $K_{oz}$. Velocity pressure exposure coefficient, $K_{oz}$ shall be determined in accordance with ASCE 7 Section 27.3.1 and the topographic factor, $K_i$ shall be determined in accordance with ASCE 7 Section 26.8.

1. For the windward side of a structure, $K_{oz}$ and $K_i$ shall be based on height $z$.
2. For leeward and sidewalls, and for windward and leeward roofs, $K_{oz}$ and $K_i$ shall be based on mean roof height $h$. 

Copyright to, or licensed by, ICC (ALL RIGHTS RESERVED); accessed by INDIVIDUAL USE ONLY pursuant to License Agreement. No further reproductions authorized.
### TABLE 1609.6.2

**NET PRESSURE COEFFICIENTS, $C_{net}$**

<table>
<thead>
<tr>
<th>STRUCTURE OR PART THEREOF</th>
<th>DESCRIPTION</th>
<th>Enclosed</th>
<th>Partially enclosed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walls:</td>
<td></td>
<td>+ Internal pressure</td>
<td>- Internal pressure</td>
</tr>
<tr>
<td>Windward wall</td>
<td></td>
<td>0.43</td>
<td>0.73</td>
</tr>
<tr>
<td>Leeward wall</td>
<td></td>
<td>-0.51</td>
<td>-0.21</td>
</tr>
<tr>
<td>Sidewall</td>
<td></td>
<td>-0.66</td>
<td>-0.35</td>
</tr>
<tr>
<td>Parapet wall</td>
<td>Windward</td>
<td>1.28</td>
<td>1.28</td>
</tr>
<tr>
<td></td>
<td>Leeward</td>
<td>-0.85</td>
<td>-0.85</td>
</tr>
<tr>
<td>Roofs:</td>
<td></td>
<td>+ Internal pressure</td>
<td>- Internal pressure</td>
</tr>
<tr>
<td>Wind perpendicular to ridge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leeward roof or flat roof</td>
<td></td>
<td>-0.66</td>
<td>-0.35</td>
</tr>
<tr>
<td>Windward roof slopes:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope &lt; 2:12 (10°)</td>
<td>Condition 1</td>
<td>-1.09</td>
<td>-0.79</td>
</tr>
<tr>
<td></td>
<td>Condition 2</td>
<td>-0.28</td>
<td>0.02</td>
</tr>
<tr>
<td>Slope = 4:12 (18°)</td>
<td>Condition 1</td>
<td>-0.73</td>
<td>-0.42</td>
</tr>
<tr>
<td></td>
<td>Condition 2</td>
<td>-0.05</td>
<td>0.25</td>
</tr>
<tr>
<td>Slope = 5:12 (23°)</td>
<td>Condition 1</td>
<td>-0.58</td>
<td>-0.28</td>
</tr>
<tr>
<td></td>
<td>Condition 2</td>
<td>0.03</td>
<td>0.34</td>
</tr>
<tr>
<td>Slope = 6:12 (27°)</td>
<td>Condition 1</td>
<td>-0.47</td>
<td>-0.16</td>
</tr>
<tr>
<td></td>
<td>Condition 2</td>
<td>0.06</td>
<td>0.37</td>
</tr>
<tr>
<td>Slope = 7:12 (30°)</td>
<td>Condition 1</td>
<td>-0.37</td>
<td>-0.06</td>
</tr>
<tr>
<td></td>
<td>Condition 2</td>
<td>0.07</td>
<td>0.37</td>
</tr>
<tr>
<td>Slope = 9:12 (37°)</td>
<td>Condition 1</td>
<td>-0.27</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>Condition 2</td>
<td>0.14</td>
<td>0.44</td>
</tr>
<tr>
<td>Slope = 12:12 (45°)</td>
<td></td>
<td>0.14</td>
<td>0.44</td>
</tr>
<tr>
<td>Wind parallel to ridge and flat roofs</td>
<td></td>
<td>-1.09</td>
<td>-0.79</td>
</tr>
</tbody>
</table>

Nonbuilding Structures: Chimneys, Tanks and Similar Structures:

<table>
<thead>
<tr>
<th>h/D</th>
<th></th>
<th>1</th>
<th>7</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square (Wind normal to face)</td>
<td>0.99</td>
<td>1.07</td>
<td>1.53</td>
<td></td>
</tr>
<tr>
<td>Square (Wind on diagonal)</td>
<td>0.77</td>
<td>0.84</td>
<td>1.15</td>
<td></td>
</tr>
<tr>
<td>Hexagonal or Octagonal</td>
<td>0.81</td>
<td>0.97</td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>Round</td>
<td>0.65</td>
<td>0.81</td>
<td>0.97</td>
<td></td>
</tr>
</tbody>
</table>

Open signs and lattice frameworks

<table>
<thead>
<tr>
<th>Ratio of solid to gross area</th>
<th>≤ 0.1</th>
<th>0.1 to 0.29</th>
<th>0.3 to 0.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat</td>
<td>1.45</td>
<td>1.30</td>
<td>1.16</td>
</tr>
<tr>
<td>Round</td>
<td>0.87</td>
<td>0.94</td>
<td>1.08</td>
</tr>
</tbody>
</table>

(continued)
## TABLE 1609.6.2—continued

### NET PRESSURE COEFFICIENTS, \( C_{net} \)

<table>
<thead>
<tr>
<th>STRUCTURE OR PART THEREOF</th>
<th>DESCRIPTION</th>
<th>Enclosed</th>
<th>Partially enclosed</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Roof elements and slopes</strong></td>
<td>Gable of hipped configurations (Zone 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flat &lt; Slope &lt; 6:12 (27°) See ASCE 7 Figure 30.4-2B Zone 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Positive</td>
<td>10 square feet or less</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 square feet or more</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 square feet or more</td>
<td>-0.92</td>
</tr>
<tr>
<td>Overhang: Flat &lt; Slope &lt; 6:12 (27°) See ASCE 7 Figure 30.4-2A Zone 1</td>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-1.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 square feet or more</td>
<td>-1.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500 square feet or more</td>
<td>-0.94</td>
</tr>
<tr>
<td>6:12 (27°) &lt; Slope &lt; 12:12 (45°) See ASCE 7 Figure 30.4-2C Zone 1</td>
<td>Positive</td>
<td>10 square feet or less</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 square feet or more</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 square feet or more</td>
<td>-0.83</td>
</tr>
<tr>
<td>Monosloped configurations (Zone 1)</td>
<td>Enclosed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flat &lt; Slope &lt; 7:12 (30°) See ASCE 7 Figure 30.4-5B Zone 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Positive</td>
<td>10 square feet or less</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 square feet or more</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-1.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 square feet or more</td>
<td>-1.09</td>
</tr>
<tr>
<td>Tall flat-topped roofs ( h &gt; 60 ) feet</td>
<td>Enclosed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flat &lt; Slope &lt; 2:12 (10°) (Zone 1) See ASCE 7 Figure 30.8-1 Zone 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-1.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500 square feet or more</td>
<td>-0.92</td>
</tr>
<tr>
<td>Gable or hipped configurations at ridges, eaves and rakes (Zone 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flat &lt; Slope &lt; 6:12 (27°) See ASCE 7 Figure 30.4-2B Zone 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Positive</td>
<td>10 square feet or less</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 square feet or more</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-1.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 square feet or more</td>
<td>-1.17</td>
</tr>
<tr>
<td>Overhang for Slope Flat &lt; Slope &lt; 6:12 (27°) See ASCE 7 Figure 30.4-2B Zone 2</td>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-1.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 square feet or more</td>
<td>-1.87</td>
</tr>
<tr>
<td>6:12 (27°) &lt; Slope &lt; 12:12 (45°) Figure 30.4-2C</td>
<td>Enclosed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Positive</td>
<td>10 square feet or less</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 square feet or more</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-1.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 square feet or more</td>
<td>-1.00</td>
</tr>
<tr>
<td>Overhang for 6:12 (27°) &lt; Slope &lt; 12:12 (45°) See ASCE 7 Figure 30.4-2C Zone 2</td>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-1.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500 square feet or more</td>
<td>-1.53</td>
</tr>
</tbody>
</table>

(continued)
### Table 1609.6.2—continued

**Net Pressure Coefficients, $C_{net}$**

<table>
<thead>
<tr>
<th>STRUCTURE OR PART THEREOF</th>
<th>DESCRIPTION</th>
<th>$C_{net}$ FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Roof elements and slopes</strong></td>
<td>Enclosed</td>
<td>Partially enclosed</td>
</tr>
<tr>
<td>Monosloped configurations at ridges, eaves and rakes (Zone 2)</td>
<td>Flat $&lt; \text{Slope} &lt; 7:12$ (30°) See ASCE 7 Figure 30.4-5B Zone 2</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>10 square feet or less</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>100 square feet or more</td>
<td>0.41</td>
</tr>
<tr>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-1.51</td>
</tr>
<tr>
<td></td>
<td>100 square feet or more</td>
<td>-1.43</td>
</tr>
<tr>
<td>Tall flat topped roofs $h &gt; 60$ feet</td>
<td>Enclosed</td>
<td>Partially enclosed</td>
</tr>
<tr>
<td>Flat $&lt; \text{Slope} &lt; 2:12$ (10°) (Zone 2) See ASCE 7 Figure 30.8-1 Zone 2</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 square feet or less</td>
<td>-2.11</td>
</tr>
<tr>
<td></td>
<td>500 square feet or more</td>
<td>-1.51</td>
</tr>
<tr>
<td>Gable or hipped configurations at corners (Zone 3) See ASCE 7 Figure 30.4-2B Zone 3</td>
<td>Flat $&lt; \text{Slope} &lt; 6:12$ (27°)</td>
<td>Enclosed</td>
</tr>
<tr>
<td>Positive</td>
<td>10 square feet or less</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>100 square feet or more</td>
<td>0.41</td>
</tr>
<tr>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-2.53</td>
</tr>
<tr>
<td></td>
<td>100 square feet or more</td>
<td>-1.85</td>
</tr>
<tr>
<td>Overhang for Slope Flat $&lt; \text{Slope} &lt; 6:12$ (27°) See ASCE 7 Figure 30.4-2B Zone 3</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 square feet or less</td>
<td>-3.15</td>
</tr>
<tr>
<td></td>
<td>100 square feet or more</td>
<td>-2.13</td>
</tr>
</tbody>
</table>

| Monosloped Configurations at corners (Zone 3) See ASCE 7 Figure 30.4-5B Zone 3 | Flat $< \text{Slope} < 7:12$ (30°) |  |
| Positive | 10 square feet or less | 0.49 | 0.81 |
| | 100 square feet or more | 0.41 | 0.72 |
| Negative | 10 square feet or less | -2.62 | -2.93 |
| | 100 square feet or more | -1.85 | -2.17 |
| Tall flat topped roofs $h > 60$ feet | Enclosed | Partially enclosed |
| Flat $< \text{Slope} < 2:12$ (10°) (Zone 3) See ASCE 7 Figure 30.8-1 Zone 3 | Negative |  |
| | 10 square feet or less | -2.87 | -3.19 |
| | 500 square feet or more | -2.11 | -2.42 |

| Wall Elements: $h = 60$ feet (Zone 4) Figure 30.4-1 | Enclosed | Partially enclosed |
| Positive | 10 square feet or less | 1.00 | 1.32 |
| | 500 square feet or more | 0.75 | 1.06 |
| Negative | 10 square feet or less | -1.09 | -1.40 |
| | 500 square feet or more | -0.83 | -1.15 |

| Wall Elements: $h > 60$ feet (Zone 4) See ASCE 7 Figure 30.8-1 Zone 4 |  |  |

---

3. Components and cladding in areas of discontinuities—roofs and overhangs

4. Components and cladding not in areas of discontinuity—walls and parapets (continued)
1609.6.4.3 Determination of net pressure coefficients, $C_{\text{net}}$.
For the design of the MWFRS and for components and cladding, the sum of the internal and external net pressure shall be based on the net pressure coefficient, $C_{\text{net}}$.

1. The pressure coefficient, $C_{\text{net}}$, for walls and roofs shall be determined from Table 1609.6.2.
2. Where $C_{\text{net}}$ has more than one value, the more severe wind load condition shall be used for design.

1609.6.4.4 Application of wind pressures.
When using the alternative all-heights method, wind pressures shall be applied simultaneously on, and in a direction normal to, all building envelope wall and roof surfaces.

1609.6.4.4.1 Components and cladding.
Wind pressure for each component or cladding element is applied as follows using $C_{\text{net}}$ values based on the effective wind area, $A$, contained within the zones in areas of discontinuity of width and/or length “a,” “2a” or “4a” at: corners of roofs and walls; edge strips for ridges, rakes and eaves; or field areas on walls or roofs as indicated in figures in tables in ASCE 7 as referenced in Table 1609.6.2 in accordance with the following:

1. Calculated pressures at local discontinuities acting over specific edge strips or corner boundary areas.
2. Include “field” (Zone 1, 2 or 4, as applicable) pressures applied to areas beyond the boundaries of the areas of discontinuity.
3. Where applicable, the calculated pressures at discontinuities (Zone 2 or 3) shall be combined with design pressures that apply specifically on rakes or eave overhangs.

### SECTION 1610
**SOIL LATERAL LOADS**

1610.1 General.
Foundation walls and retaining walls shall be designed to resist lateral soil loads. Soil loads specified in Table 1610.1 shall be used as the minimum design lateral soil loads unless determined otherwise by a geotechnical investigation in accordance with Section 1803. Foundation walls and other walls in which horizontal movement is restricted at the top shall be designed for at-rest pressure. Retaining walls free to move and rotate at the top shall be permitted to be designed for active pressure. Design lateral pressure from surcharge loads shall be added to the lateral earth pressure load. Design lateral pressure shall be increased if soils at the site are expansive. Foundation walls shall be designed to support the weight of the full hydrostatic pressure of undrained backfill unless a drainage system is installed in accordance with Sections 1805.4.2 and 1805.4.3.

**Exception:** Foundation walls extending not more than 8 feet (2438 mm) below grade and laterally supported at the
top by flexible diaphragms shall be permitted to be designed for active pressure.

SECTION 1611
RAIN LOADS

1611.1 Design rain loads. Each portion of a roof shall be designed to sustain the load of rainwater that will accumulate on it if the primary drainage system for that portion is blocked plus the uniform load caused by water that rises above the inlet of the secondary drainage system at its design flow. The design rainfall shall be based on the 100-year hourly rainfall rate indicated in Figure 1611.1 or on other rainfall rates determined from approved local weather data.

\[ R = 5.2 (d_s + d_h) \]  

(Equation 16-36)

For SI: \[ R = 0.0098 (d_s + d_h) \]

where:

\( d_h \) = Additional depth of water on the undeflected roof above the inlet of secondary drainage system at its design flow (i.e., the hydraulic head), in inches (mm).

\( d_s \) = Depth of water on the undeflected roof up to the inlet of secondary drainage system when the primary drainage system is blocked (i.e., the static head), in inches (mm).

1611.2 Ponding instability. Susceptible bays of roofs shall be evaluated for ponding instability in accordance with Section 8.4 of ASCE 7.

1611.3 Controlled drainage. Roofs equipped with hardware to control the rate of drainage shall be equipped with a secondary drainage system at a higher elevation that limits accumulation of water on the roof above that elevation. Such roofs shall be designed to sustain the load of rainwater that will accumulate on them to the elevation of the secondary drainage system plus the uniform load caused by water that rises above the inlet of the secondary drainage system at its design flow determined from Section 1611.1. Such roofs shall also be checked for ponding instability in accordance with Section 1611.2.

<table>
<thead>
<tr>
<th>TABLE 1610.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>LATERAL SOIL LOAD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DESCRIPTION OF BACKFILL MATERIAL</th>
<th>UNIFIED SOIL CLASSIFICATION</th>
<th>DESIGN LATERAL SOIL LOAD (pound per square foot per foot of depth)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well-graded, clean gravels; gravel-sand mixes</td>
<td>GW</td>
<td>Active 30 At-rest 60</td>
</tr>
<tr>
<td>Poorly graded clean gravels; gravel-sand mixes</td>
<td>GP</td>
<td>Active 30 At-rest 60</td>
</tr>
<tr>
<td>Silty gravels, poorly graded gravel-sand mixes</td>
<td>GM</td>
<td>Active 40 At-rest 60</td>
</tr>
<tr>
<td>Clayey gravels, poorly graded gravel-and-clay mixes</td>
<td>GC</td>
<td>Active 45 At-rest 60</td>
</tr>
<tr>
<td>Well-graded, clean sands; gravelly sand mixes</td>
<td>SW</td>
<td>Active 30 At-rest 60</td>
</tr>
<tr>
<td>Poorly graded clean sands; sand-gravel mixes</td>
<td>SP</td>
<td>Active 30 At-rest 60</td>
</tr>
<tr>
<td>Silty sands, poorly graded sand-silt mixes</td>
<td>SM</td>
<td>Active 45 At-rest 60</td>
</tr>
<tr>
<td>Sand-silt clay mix with plastic fines</td>
<td>SM-SC</td>
<td>Active 45 At-rest 100</td>
</tr>
<tr>
<td>Clayey sands, poorly graded sand-clay mixes</td>
<td>SC</td>
<td>Active 60 At-rest 100</td>
</tr>
<tr>
<td>Inorganic silts and clayey silts</td>
<td>ML</td>
<td>Active 45 At-rest 100</td>
</tr>
<tr>
<td>Mixture of inorganic silt and clay</td>
<td>ML-CL</td>
<td>Active 60 At-rest 100</td>
</tr>
<tr>
<td>Inorganic clays of low to medium plasticity</td>
<td>CL</td>
<td>Active 60 At-rest 100</td>
</tr>
<tr>
<td>Organic silts and silt clays, low plasticity</td>
<td>OL</td>
<td>Note b</td>
</tr>
<tr>
<td>Inorganic clayey silts, elastic silts</td>
<td>MH</td>
<td>Note b</td>
</tr>
<tr>
<td>Inorganic clays of high plasticity</td>
<td>CH</td>
<td>Note b</td>
</tr>
<tr>
<td>Organic clays and silty clays</td>
<td>OH</td>
<td>Note b</td>
</tr>
</tbody>
</table>

For SI: 1 pound per square foot per foot of depth = 0.157 kPa/m, 1 foot = 304.8 mm.

a. Design lateral soil loads are given for moist conditions for the specified soils at their optimum densities. Actual field conditions shall govern. Submerged or saturated soil pressures shall include the weight of the buoyant soil plus the hydrostatic loads.

b. Unsuitable as backfill material.

c. The definition and classification of soil materials shall be in accordance with ASTM D 2487.
FIGURE 1611.1
100-YEAR, 1-HOUR RAINFALL (INCHES) WESTERN UNITED STATES

For SI: 1 inch = 25.4 mm.
For SI: 1 inch = 25.4 mm.
For SI: 1 inch = 25.4 mm.
FIGURE 1611.1—continued

100-YEAR, 1-HOUR RAINFALL (INCHES) ALASKA

For SI: 1 inch = 25.4 mm.
SECTION 1612
FLOOD LOADS

1612.1 General. Within flood hazard areas as established in Section 1612.3, all new construction of buildings, structures and portions of buildings and structures, including substantial improvement and restoration of substantial damage to buildings and structures, shall be designed and constructed to resist the effects of flood hazards and flood loads. For buildings that are located in more than one flood hazard area, the provisions associated with the most restrictive flood hazard area shall apply.

1612.2 Definitions. The following terms are defined in Chapter 2:

- **BASE FLOOD.**
- **BASE FLOOD ELEVATION.**
- **BASEMENT.**
- **DESIGN FLOOD.**
- **DESIGN FLOOD ELEVATION.**
- **DRY FLOODPROOFING.**
- **EXISTING CONSTRUCTION.**
- **EXISTING STRUCTURE.**
- **FLOOD or FLOODING.**
- **FLOOD DAMAGE-RESISTANT MATERIALS.**
- **FLOOD HAZARD AREA.**
- **FLOOD HAZARD AREA SUBJECT TO HIGH-VELOCITY WAVE ACTION.**
- **FLOOD INSURANCE RATE MAP (FIRM).**
- **FLOOD INSURANCE STUDY.**
- **FLOODWAY.**
- **LOWEST FLOOR.**
- **SPECIAL FLOOD HAZARD AREA.**
- **START OF CONSTRUCTION.**
- **SUBSTANTIAL DAMAGE.**
- **SUBSTANTIAL IMPROVEMENT.**

1612.3 Establishment of flood hazard areas. To establish flood hazard areas, the applicable governing authority shall adopt a flood hazard map and supporting data. The flood hazard map shall include, at a minimum, areas of special flood hazard as identified by the Federal Emergency Management Agency in an engineering report entitled “The Flood Insurance Study for [INSERT NAME OF JURISDICTION],” dated [INSERT DATE OF ISSUANCE], as amended or revised with the accompanying Flood Insurance Rate Map (FIRM) and Flood Boundary and Floodway Map (FBFM) and related supporting data along with any revisions thereto. The adopted flood hazard map and supporting data are hereby adopted by reference and declared to be part of this section.

**Exception:** [OSHPD 2] The flood hazard map shall include, at a minimum, areas of special flood hazard as identified by the Federal Emergency Management Agency’s Flood Insurance Study (FIS) adopted by the local authority having jurisdiction where the project is located.

1612.3.1 Design flood elevations. Where design flood elevations are not included in the flood hazard areas established in Section 1612.3, or where floodways are not designated, the building official is authorized to require the applicant to:

1. Obtain and reasonably utilize any design flood elevation and floodway data available from a federal, state or other source; or
2. Determine the design flood elevation and/or floodway in accordance with accepted hydrologic and hydraulic engineering practices used to define special flood hazard areas. Determinations shall be undertaken by a registered design professional who shall document that the technical methods used reflect currently accepted engineering practice.

1612.3.2 Determination of impacts. In riverine flood hazard areas where design flood elevations are specified but floodways have not been designated, the applicant shall provide a floodway analysis that demonstrates that the proposed work will not increase the design flood elevation more than 1 foot (305 mm) at any point within the jurisdiction of the applicable governing authority.

1612.4 Design and construction. The design and construction of buildings and structures located in flood hazard areas, including flood hazard areas subject to high-velocity wave action, shall be in accordance with Chapter 5 of ASCE 7 and with ASCE 24.

1612.5 Flood hazard documentation. The following documentation shall be prepared and sealed by a registered design professional and submitted to the building official:

1. For construction in flood hazard areas not subject to high-velocity wave action:
   1.1. The elevation of the lowest floor, including the basement, as required by the lowest floor elevation inspection in Section 110.3.3, Chapter 1, Division II.
   1.2. For fully enclosed areas below the design flood elevation where provisions to allow for the automatic entry and exit of floodwaters do not meet the minimum requirements in Section 2.6.2.1 of ASCE 24, construction documents shall include a statement that the design will provide for equalization of hydrostatic flood forces in accordance with Section 2.6.2.2 of ASCE 24.
   1.3. For dry floodproofed nonresidential buildings, construction documents shall include a statement that the dry floodproofing is designed in accordance with ASCE 24.

2. For construction in flood hazard areas subject to high-velocity wave action:
   2.1. The elevation of the bottom of the lowest horizontal structural member as required by the
2.2. Construction documents shall include a statement that the building is designed in accordance with ASCE 24, including that the pile or column foundation and building or structure to be attached thereto is designed to be anchored to resist flotation, collapse and lateral movement due to the effects of wind and flood loads acting simultaneously on all building components, and other load requirements of Chapter 16.

2.3. For breakaway walls designed to have a resistance of more than 20 psf (0.96 kN/m²) determined using allowable stress design, construction documents shall include a statement that the breakaway wall is designed in accordance with ASCE 24.

SECTION 1613 EARTHQUAKE LOADS

1613.1 Scope. Every structure, and portion thereof, including nonstructural components that are permanently attached to structures and their supports and attachments, shall be designed and constructed to resist the effects of earthquake motions in accordance with ASCE 7, excluding Chapter 14 and Appendix 11A. The seismic design category for a structure is permitted to be determined in accordance with Section 1613 or ASCE 7.

Exceptions:

1. Detached one- and two-family dwellings, assigned to Seismic Design Category A, B or C, or located where the mapped short-period spectral response acceleration, \( S_s \), is less than 0.4 g.

2. The seismic force-resisting system of wood-frame buildings that conform to the provisions of Section 2308 are not required to be analyzed as specified in this section. [OSHPD 2] Not permitted by OSHPD, see Section 2308.

3. Agricultural storage structures intended only for incidental human occupancy.

4. Structures that require special consideration of their response characteristics and environment that are not addressed by this code or ASCE 7 and for which other regulations provide seismic criteria, such as vehicular bridges, electrical transmission towers, hydraulic structures, buried utility lines and their appurtenances and nuclear reactors.

5. [OSHPD 2] Seismic Design Category shall be in accordance with exception to Section 1613.3.5.

1613.1.1 Scope. [SL] For applications listed in Section 1.12 regulated by the State Librarian, only the provisions of ASCE 7 Tables 13.5-1 and 1607.1, as amended, of this code shall apply.

1613.1.2 State-owned buildings. State-owned buildings, including those of the University of California, CSU and Judicial Council, shall not be constructed where any portion of the foundation would be within a mapped area of earthquake-induced liquefaction of landsliding or within 50 feet of a mapped fault rupture hazard as established by Section 1803.7.

1613.1.3 Existing state buildings. Additions, alterations, repairs or change of occupancy category of existing buildings shall be in accordance with Chapter 34.

1613.2 Definitions. The following terms are defined in Chapter 2:

- DESIGN EARTHQUAKE GROUND MOTION.
- MECHANICAL SYSTEMS.
- ORTHOGONAL.
- RISK-TARGETED MAXIMUM CONSIDERED EARTHQUAKE (MCE\(_\text{eq} \)) GROUND MOTION RESPONSE ACCELERATION.
- SEISMIC DESIGN CATEGORY.
- SEISMIC FORCE-RESISTING SYSTEM.
- SITE CLASS.
- SITE COEFFICIENTS.

1613.3 Seismic ground motion values. Seismic ground motion values shall be determined in accordance with this section.

1613.3.1 Mapped acceleration parameters. The parameters \( S_1 \) and \( S_s \) shall be determined from the 0.2 and 1-second spectral response accelerations shown on Figures 1613.3.1(1) through 1613.3.1(6). Where \( S_1 \) is less than or equal to 0.04 and \( S_s \) is less than or equal to 0.15, the structure is permitted to be assigned to Seismic Design Category A. The parameters \( S_1 \) and \( S_s \) shall be, respectively, 1.5 and 0.6 for Guam and 1.0 and 0.4 for American Samoa.

Exception: [OSHPD 2] Seismic Design Category shall be in accordance with exception to Section 1613.3.5.

<table>
<thead>
<tr>
<th>SITE CLASS</th>
<th>MAPPED SPECTRAL RESPONSE ACCELERATION AT SHORT PERIOD</th>
<th>( S_s ) ≤ 0.25</th>
<th>( S_s = 0.50 )</th>
<th>( S_s = 0.75 )</th>
<th>( S_s = 1.00 )</th>
<th>( S_s ≥ 1.25 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1.2</td>
<td>1.2</td>
<td>1.1</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1.6</td>
<td>1.4</td>
<td>1.2</td>
<td>1.1</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>2.5</td>
<td>1.7</td>
<td>1.2</td>
<td>0.9</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Note b</td>
<td>Note b</td>
<td>Note b</td>
<td>Note b</td>
<td>Note b</td>
<td></td>
</tr>
</tbody>
</table>

Note b: Use straight-line interpolation for intermediate values of mapped spectral response acceleration at short period, \( S_s \).

Note b: Values shall be determined in accordance with Section 11.4.7 of ASCE 7.

TABLE 1613.3.3(1) VALUES OF SITE COEFFICIENT \( F_s \) *

---

Copyright to, or licensed by, ICC (ALL RIGHTS RESERVED); accessed by INDIVIDUAL USE ONLY pursuant to License Agreement. No further reproductions authorized.
1613.3.2 Site class definitions. Based on the site soil properties, the site shall be classified as Site Class A, B, C, D, E or F in accordance with Chapter 20 of ASCE 7. Where the soil properties are not known in sufficient detail to determine the site class, Site Class D shall be used unless the building official or geotechnical data determines Site Class E or F soils are present at the site.

1613.3.3 Site coefficients and adjusted maximum considered earthquake spectral response acceleration parameters. The maximum considered earthquake spectral response acceleration for short periods, $S_{MS}$, and at 1-second period, $S_{M1}$, adjusted for site class effects shall be determined by Equations 16-37 and 16-38, respectively:

$$S_{MS} = F_a S_s$$ (Equation 16-37)

$$S_{M1} = F_v S_1$$ (Equation 16-38)

where:

- $F_a =$ Site coefficient defined in Table 1613.3.3(1).
- $F_v =$ Site coefficient defined in Table 1613.3.3(2).
- $S_s =$ The mapped spectral accelerations for short periods as determined in Section 1613.3.1.

$$S_1 =$ The mapped spectral accelerations for a 1-second period as determined in Section 1613.3.1.

1613.3.4 Design spectral response acceleration parameters. Five-percent damped design spectral response acceleration at short periods, $S_{DS}$, and at 1-second period, $S_{D1}$, shall be determined from Equations 16-39 and 16-40, respectively:

$$S_{DS} = \frac{2}{3} S_{MS}$$ (Equation 16-39)

$$S_{D1} = \frac{2}{3} S_{M1}$$ (Equation 16-40)

where:

- $S_{MS}$ = The maximum considered earthquake spectral response accelerations for short period as determined in Section 1613.3.3.
- $S_{M1}$ = The maximum considered earthquake spectral response accelerations for 1-second period as determined in Section 1613.3.3.

### Table 1613.3.3(2)

VALUES OF SITE COEFFICIENT $F_v$ *

<table>
<thead>
<tr>
<th>SITE CLASS</th>
<th>$S_s \leq 0.1$</th>
<th>$S_s = 0.2$</th>
<th>$S_s = 0.3$</th>
<th>$S_s = 0.4$</th>
<th>$S_s \geq 0.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>B</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>C</td>
<td>1.7</td>
<td>1.6</td>
<td>1.5</td>
<td>1.4</td>
<td>1.3</td>
</tr>
<tr>
<td>D</td>
<td>2.4</td>
<td>2.0</td>
<td>1.8</td>
<td>1.6</td>
<td>1.5</td>
</tr>
<tr>
<td>E</td>
<td>3.5</td>
<td>3.2</td>
<td>2.8</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>F</td>
<td>Note b</td>
<td>Note b</td>
<td>Note b</td>
<td>Note b</td>
<td>Note b</td>
</tr>
</tbody>
</table>

a. Use straight-line interpolation for intermediate values of mapped spectral response acceleration at 1-second period, $S_1$.

b. Values shall be determined in accordance with Section 11.4.7 of ASCE 7.

### Table 1613.3.5(1)

SEISMIC DESIGN CATEGORY BASED ON SHORT-PERIOD (0.2 second) RESPONSE ACCELERATIONS

<table>
<thead>
<tr>
<th>VALUE OF $S_{DS}$</th>
<th>RISK CATEGORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_{DS} \leq 0.167g$</td>
<td>I or II</td>
</tr>
<tr>
<td>$0.167g \leq S_{DS} &lt; 0.33g$</td>
<td>B</td>
</tr>
<tr>
<td>$0.33g \leq S_{DS} &lt; 0.50g$</td>
<td>C</td>
</tr>
<tr>
<td>$0.50g \leq S_{DS}$</td>
<td>D</td>
</tr>
</tbody>
</table>

### Table 1613.3.5(2)

SEISMIC DESIGN CATEGORY BASED ON 1-SECOND PERIOD RESPONSE ACCELERATION

<table>
<thead>
<tr>
<th>VALUE OF $S_{D1}$</th>
<th>RISK CATEGORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_{D1} \leq 0.067g$</td>
<td>I or II</td>
</tr>
<tr>
<td>$0.067g \leq S_{D1} &lt; 0.133g$</td>
<td>B</td>
</tr>
<tr>
<td>$0.133g \leq S_{D1} &lt; 0.20g$</td>
<td>C</td>
</tr>
<tr>
<td>$0.20g \leq S_{D1}$</td>
<td>D</td>
</tr>
</tbody>
</table>
FIGURE 1613.3.1(1)

RISK-TARGETED MAXIMUM CONSIDERED EARTHQUAKE (MCE) GROUND MOTION RESPONSE ACCELERATIONS FOR THE CONTERMINOUS UNITED STATES OF 0.2-SECOND SPECTRAL RESPONSE ACCELERATION (5% OF CRITICAL DAMPING), SITE CLASS B

(continued)
FIGURE 1613.3.1(1)—continued
RISK-TARGETED MAXIMUM CONSIDERED EARTHQUAKE (MCE) GROUND MOTION RESPONSE ACCELERATIONS
FOR THE CONTERMINOUS UNITED STATES OF 0.2-SECOND SPECTRAL RESPONSE ACCELERATION
(5% OF CRITICAL DAMPING), SITE CLASS B
FIGURE 1613.3.1(2)
RISK-TARGETED MAXIMUM CONSIDERED EARTHQUAKE (MCE) GROUND MOTION RESPONSE ACCELERATIONS
FOR THE CONTERMINOUS UNITED STATES OF 1-SECOND SPECTRAL RESPONSE ACCELERATION
(5% OF CRITICAL DAMPING), SITE CLASS B
(continued)
FIGURE 1613.3.1(2)—continued
RISK-TARGETED MAXIMUM CONSIDERED EARTHQUAKE (MCE,\textsubscript{c}) GROUND MOTION RESPONSE ACCELERATIONS
FOR THE CONTERMINOUS UNITED STATES OF 1-SECOND SPECTRAL RESPONSE ACCELERATION
(5% OF CRITICAL DAMPING), SITE CLASS B
Figure 1613.3.1(3) Risk-Targeted Maximum Considered Earthquake (MCEₚ) Ground Motion Response Accelerations for Hawaii of 0.2- and 1-Second Spectral Response Acceleration (5% of Critical Damping), Site Class B
FIGURE 1613.3.1(4)
RISK-TARGETED MAXIMUM CONSIDERED EARTHQUAKE (MCE$_a$) GROUND MOTION RESPONSE ACCELERATIONS FOR ALASKA OF 0.2-SECOND SPECTRAL RESPONSE ACCELERATION (5% OF CRITICAL DAMPING), SITE CLASS B
FIGURE 1613.3.1(5)
RISK-TARGETED MAXIMUM CONSIDERED EARTHQUAKE (MCE) GROUND MOTION RESPONSE ACCELERATIONS FOR ALASKA OF 1.0-SECOND SPECTRAL RESPONSE ACCELERATION (5% OF CRITICAL DAMPING), SITE CLASS B
FIGURE 1613.3.1(6)
RISK-TARGETED MAXIMUM CONSIDERED EARTHQUAKE (MCE) GROUND MOTION RESPONSE ACCELERATIONS FOR PUERTO RICO AND THE UNITED STATES VIRGIN ISLANDS OF 0.2- AND 1-SECOND SPECTRAL RESPONSE ACCELERATION (5% OF CRITICAL DAMPING), SITE CLASS B
1613.3.5 Determination of seismic design category. Structures classified as Risk Category I, II or III that are located where the mapped spectral response acceleration parameter at 1-second period, $S_0$, is less than or equal to 0.75 shall be assigned to Seismic Design Category E. Structures classified as Risk Category IV that are located where the mapped spectral response acceleration parameter at 1-second period, $S_0$, is greater than or equal to 0.75 shall be assigned to Seismic Design Category F. All other structures shall be assigned to a seismic design category based on their risk category and the design spectral response acceleration parameters, $S_{0m}$ and $S_{0m}$, determined in accordance with Section 1613.3.4 or the site-specific procedures of ASCE 7. Each building and structure shall be assigned to the more severe seismic design category in accordance with Table 1613.3.5(1) or 1613.3.5(2), irrespective of the fundamental period of vibration of the structure, $T_f$.

**Exception:** [OSHPD 2] Structures not assigned to Seismic Design Category E or F above shall be assigned to Seismic Design Category D.

1613.3.5.1 Alternative seismic design category determination. Where $S_0$ is less than 0.75, the seismic design category is permitted to be determined from Table 1613.3.5(1) alone when all of the following apply:

1. In each of the two orthogonal directions, the approximate fundamental period of the structure, $T_f$, in each of the two orthogonal directions determined in accordance with Section 12.8.2.1 of ASCE 7, is less than 0.8 $T_f$ determined in accordance with Section 11.4.5 of ASCE 7.
2. In each of the two orthogonal directions, the fundamental period of the structure used to calculate the story drift is less than $T_f$.
3. Equation 12.8-2 of ASCE 7 is used to determine the seismic response coefficient, $C_s$.
4. The diaphragms are rigid as defined in Section 12.3.1 of ASCE 7 or, for diaphragms that are flexible, the distances between vertical elements of the seismic force-resisting system do not exceed 40 feet (12 192 mm).

**Exception:** [OSHPD 2] Seismic design category shall be determined in accordance with exception to Section 1613.3.5.

1613.3.5.2 Simplified design procedure. Where the alternate simplified design procedure of ASCE 7 is used, the seismic design category shall be determined in accordance with ASCE 7.

**Exception:** [OSHPD 2] Seismic design category shall be determined in accordance with exception to Section 1613.3.5.

1613.4 Alternatives to ASCE 7. The provisions of Section 1613.4 shall be permitted as alternatives to the relevant provisions of ASCE 7.

1613.4.1 Additional seismic force-resisting systems for seismically isolated structures. Add the following exception to the end of Section 17.5.4.2 of ASCE 7:

**Exception:** For isolated structures designed in accordance with this standard, the Structural System Limitations and the Building Height Limitations in Table 12.2-1 for ordinary steel concentrically framed buildings (OCBFs) as defined in Chapter 11 and ordinary moment frames (OMFs) as defined in Chapter 11 are permitted to be taken as 160 feet (48 768 mm) for structures assigned to Seismic Design Category D, E or F, provided that the following conditions are satisfied:

1. The value of $R_s$ as defined in Chapter 17 is taken as 1.
2. For OMFs and OCBFs, design is in accordance with AISC 341.

1613.5 [BSC, HCD 1 & HCD 2] Modifications to ASCE 7. The text of ASCE 7 shall be modified as indicated in Sections 1613.5.1 through 1613.5.2.

1613.5.1 [BSC, HCD 1 & HCD 2] Modify ASCE 7 DEFINITIONS as follows:

1.2 DEFINITIONS.

**BALLASTED PHOTOVOLTAIC SYSTEM:** A roof mounted system composed of solar photovoltaic panels and supporting members that are unattached or partially attached to the roof and must rely on its weight, aerodynamics and friction to counter the effect of wind and seismic forces.

1613.5.2 [BSC, HCD 1 & HCD 2] Modify ASCE 7 Section 13.4 as follows:

Section 13.4 NONSTRUCTURAL COMPONENT ANCHORAGE.

Components and their supports shall be attached (or anchored) to the structure in accordance with the requirements of this section and the attachment shall satisfy the requirements for the parent material as set forth elsewhere in this standard. Component attachments shall be bolted, welded, or otherwise positively fastened without consideration of frictional resistance produced by the effects of gravity. A continuous load path of sufficient strength and stiffness between the component and the supporting structure shall be provided. Local elements of the structure including connections shall be designed and constructed for the component forces where they control the design of the elements or their connections. The component forces shall be those determined in Section 13.3.1, except that modifications to $F_p$ and $R_s$ due to anchorage conditions need not be considered. The design documents shall include sufficient information relating to the attachments to verify compliance with the requirements of this section.

**Exception:** Ballasted photovoltaic systems when design is based on Section 13.4.7 and approved by the enforcing agency.
13.4.7. Solar PV panels or modules installed on a roof as a ballasted system need not be rigidly attached to the roof or supporting structure. Ballasted systems shall be designed and installed only on roofs with slopes 1 inch per foot or less. The ballasted system shall be designed to resist sliding and uplift resulting from lateral and vertical forces, using a coefficient of friction determined by acceptable engineering practices. In sites where the Seismic Design Category is C or above, the system shall be designed to accommodate seismic displacement determined by approved analysis or shake-table testing, using input motions consistent with ASCE 7 lateral and vertical seismic forces for non-structural components on roofs.

SECTION 1614
ATMOSPHERIC ICE LOADS

1614.1 General. Ice-sensitive structures shall be designed for atmospheric ice loads in accordance with Chapter 10 of ASCE 7.

SECTION 1615
STRUCTURAL INTEGRITY

1615.1 General. High-rise buildings that are assigned to Risk Category III or IV shall comply with the requirements of this section. Frame structures shall comply with the requirements of Section 1615.3. Bearing wall structures shall comply with the requirements of Section 1615.4.

1615.2 Definitions. The following words and terms are defined in Chapter 2:

BEARING WALL STRUCTURE.

FRAME STRUCTURE.

1615.3 Frame structures. Frame structures shall comply with the requirements of this section.

1615.3.1 Concrete frame structures. Frame structures constructed primarily of reinforced or prestressed concrete, either cast-in-place or precast, or a combination of these, shall conform to the requirements of ACI 318 Sections 7.13, 13.3.8.5, 13.3.8.6, 16.5, 18.12.6, 18.12.7 and 18.12.8 as applicable. Where ACI 318 requires that non-prestressed reinforcing or prestressing steel pass through the region bounded by the longitudinal column reinforcement, that reinforcing or prestressing steel shall have a minimum nominal tensile strength equal to two-thirds of the required one-way vertical strength of the connection of the floor or roof system to the column in each direction of beam or slab reinforcement passing through the column.

Exception: Where concrete slabs with continuous reinforcement having an area not less than 0.0015 times the concrete area in each of two orthogonal directions are present and are either monolithic with or equivalently bonded to beams, girders or columns, the longitudinal reinforcing or prestressing steel passing through the column reinforcement shall have a nominal tensile strength of one-third of the required one-way vertical strength of the connection of the floor or roof system to the column in each direction of beam or slab reinforcement passing through the column.

1615.3.2 Structural steel, open web steel joist or joist girder, or composite steel and concrete frame structures. Frame structures constructed with a structural steel frame or a frame composed of open web steel joists, joist girders with or without other structural steel elements or a frame composed of composite steel or composite steel joists and reinforced concrete elements shall conform to the requirements of this section.

1615.3.2.1 Columns. Each column splice shall have the minimum design strength in tension to transfer the design dead and live load tributary to the column between the splice and the splice or base immediately below.

1615.3.2.2 Beams. End connections of all beams and girders shall have a minimum nominal axial tensile strength equal to the required vertical shear strength for allowable stress design (ASD) or two-thirds of the required shear strength for load and resistance factor design (LRFD) but not less than 10 kips (45 kN). For the purpose of this section, the shear force and the axial tensile force need not be considered to act simultaneously.

Exception: Where beams, girders, open web joist and joist girders support a concrete slab or concrete slab on metal deck that is attached to the beam or girder with not less than 1/4-inch-diameter (9.5 mm) headed shear studs, at a spacing of not more than 12 inches (305 mm) on center, averaged over the length of the member, or other attachment having equivalent shear strength, and the slab contains continuous distributed reinforcement in each of two orthogonal directions with an area not less than 0.0015 times the concrete area, the nominal axial tension strength of the end connection shall be permitted to be taken as half the required vertical shear strength for ASD or one-third of the required shear strength for LRFD, but not less than 10 kips (45 kN).

1615.4 Bearing wall structures. Bearing wall structures shall have vertical ties in all load-bearing walls and longitudinal ties, transverse ties and perimeter ties at each floor level in accordance with this section and as shown in Figure 1615.4.

1615.4.1 Concrete wall structures. Precast bearing wall structures constructed solely of reinforced or prestressed concrete, or combinations of these shall conform to the requirements of Sections 7.13, 13.3.8.5 and 16.5 of ACI 318.
FIGURE 1615.4
LONGITUDINAL, PERIMETER, TRANSVERSE AND VERTICAL TIES

T = Transverse
L = Longitudinal
V = Vertical
P = Perimeter
1615.4.2 Other bearing wall structures. Ties in bearing wall structures other than those covered in Section 1615.4.1 shall conform to this section.

1615.4.2.1 Longitudinal ties. Longitudinal ties shall consist of continuous reinforcement in slabs; continuous or spliced decks or sheathing; continuous or spliced members framing to, within or across walls; or connections of continuous framing members to walls. Longitudinal ties shall extend across interior load-bearing walls and shall connect to exterior load-bearing walls and shall be spaced at not greater than 10 feet (3038 mm) on center. Ties shall have a minimum nominal tensile strength, \( T_r \), given by Equation 16-41. For ASD the minimum nominal tensile strength shall be permitted to be taken as 1.5 times the allowable tensile stress times the area of the tie.

\[ T_r = \frac{w}{L} S \leq \alpha_r S \]  \hspace{1cm} (Equation 16-41)

where:

- \( L \) = The span of the horizontal element in the direction of the tie, between bearing walls, feet (m).
- \( w \) = The weight per unit area of the floor or roof in the span being tied to or across the wall, psf (N/m²).
- \( S \) = The spacing between ties, feet (m).
- \( \alpha_r \) = A coefficient with a value of 1,500 pounds per foot (2.25 kN/m) for masonry bearing wall structures and a value of 375 pounds per foot (0.6 kN/m) for structures with bearing walls of cold-formed steel light-frame construction.

1615.4.2.2 Transverse ties. Transverse ties shall consist of continuous reinforcement in slabs; continuous or spliced decks or sheathing; continuous or spliced members framing to, within or across walls; or connections of continuous framing members to walls. Transverse ties shall be placed no farther apart than the spacing of load-bearing walls. Transverse ties shall have minimum nominal tensile strength \( T_r \), given by Equation 16-46. For ASD the minimum nominal tensile strength shall be permitted to be taken as 1.5 times the allowable tensile stress times the area of the tie.

1615.4.2.3 Perimeter ties. Perimeter ties shall consist of continuous reinforcement in slabs; continuous or spliced decks or sheathing; continuous or spliced members framing to, within or across walls; or connections of continuous framing members to walls. Ties around the perimeter of each floor and roof shall be located within 4 feet (1219 mm) of the edge and shall provide a nominal strength in tension not less than \( T_r \), given by Equation 16-42. For ASD the minimum nominal tensile strength shall be permitted to be taken as 1.5 times the allowable tensile stress times the area of the tie.

\[ T_p = 200w \leq \beta_r \]  \hspace{1cm} (Equation 16-42)

For SI: \( T_p = 90.7w \leq \beta_r \)

where:

- \( w \) = As defined in Section 1615.4.2.1.
- \( \beta_r \) = A coefficient with a value of 16,000 pounds (7200 kN) for structures with masonry bearing walls and a value of 4,000 pounds (1300 kN) for structures with bearing walls of cold-formed steel light-frame construction.

1615.4.2.4 Vertical ties. Vertical ties shall consist of continuous or spliced reinforcing, continuous or spliced members, wall sheathing or other engineered systems. Vertical tension ties shall be provided in bearing walls and shall be continuous over the height of the building. The minimum nominal tensile strength for vertical ties within a bearing wall shall be equal to the weight of the wall within that story plus the weight of the diaphragm tributary to the wall in the story below. No fewer than two ties shall be provided for each wall. The strength of each tie need not exceed 3,000 pounds per foot (450 kN/m) of wall tributary to the tie for walls of masonry construction or 750 pounds per foot (140 kN/m) of wall tributary to the tie for walls of cold-formed steel light-frame construction.

SECTION 1616
ADDITIONAL REQUIREMENTS [DSA-SS/CC]

1616.1 Construction documents.

1616.1.1 Additional requirements for construction documents are included in Sections 4-210 and 4-317 of the California Administrative Code (Part 1, Title 24, C.C.R).

1616.1.2 Connections. Connections that resist design seismic forces shall be designed and detailed on the design drawings.

1616.1.3 Construction procedures. Where unusual erection or construction procedures are considered essential by the project structural engineer or architect in order to accomplish the intent of the design or influence the design, such procedure shall be indicated on the plans or in the specifications.

1616.2 General design requirements.

1616.2.1 Lateral load deflections.

1616.2.1.1 Horizontal diaphragms. The maximum span-width ratio for any roof or floor diaphragm shall not exceed those given in Table 4.2.4 of AF & PA < SDPWS for wood sheathed diaphragms. For other diaphragms, test data and design calculations acceptable to the enforcement agency shall be submitted and approved for span-width ratios.

1616.2.1.2 Veneers. The deflection shall not exceed \( l/600 \) for veneered walls, anchored veneers and adhered veneers over 1 inch (25 mm) thick, including the mortar backing.

1616.2.1.3 Risk Category of buildings and other structures. Risk Category IV includes structures as defined in the California Administrative Code, Section 4-207 and all structures required for their continuous operation or access/egress.

1616.2.2 Structural walls. For anchorage of concrete or masonry walls to roof and floor diaphragms, the out-of-
1616.3 Load combinations.

1616.3.1 Stability. When checking stability under the provisions of Section 1605.1.1 using allowable stress design, the factor of safety for soil bearing values shall not be less than the overstrength factor of the structures supported.

1616.4 Roof dead loads. The design dead load shall provide for the weight of at least one additional roof covering in addition to other applicable loadings if the new roof covering is permitted to be applied over the original roofing without its removal, in accordance with Section 1510.

1616.5 Live loads.

1616.5.1 Modifications to Table 1607.1.

1616.5.1.1 Item 4. Assembly areas. The following minimum loads for stage accessories apply:

1. Gridirons and fly galleries: 75 pounds per square foot uniform live load.
2. Loft block wells: 250 pounds per lineal foot vertical load and lateral load.
3. Head block wells and sheave beams: 250 pounds per lineal foot vertical load and lateral load. Head block wells and sheave beams shall be designed for all tributary loft block well loads. Sheave blocks shall be designed with a safety factor of five.
4. Scenery beams where there is no gridiron: 300 pounds per lineal foot vertical load and lateral load.
5. Ceiling framing over stages shall be designed for a uniform live load of 20 pounds per square foot. For members supporting a tributary area of 200 square feet or more, this additional load may be reduced to 15 pounds per square foot (0.72 kN/ m²).

1616.5.1.2 Item 24. Reviewing stands, grandstands and bleachers. The minimum uniform live load for a press box floor or accessible roof with railing is 100 psf.

1616.5.1.3 Item 35. Yards and terraces, pedestrians. Item 35 applies to pedestrian bridges and walkways that are not subjected to uncontrolled vehicle access.

1616.5.1.4 Item 36. Storage racks and wall-hung cabinets. The minimum vertical design live load shall be as follows:

Paper media:
- 12-inch-deep (305 mm) shelf - 33 pounds per lineal foot (482 N/m)
- 15-inch-deep (381 mm) shelf - 41 pounds per lineal foot (598 N/m), or 33 pounds per cubic foot (5183 N/m³) per total volume of the rack or cabinet, whichever is less.

Film media:
- 18-inch-deep (457 mm) shelf - 100 pounds per lineal foot (1459 N/m), or 50 pounds per cubic foot (7853 N/m³) per total volume of the rack or cabinet, whichever is less.

Other media:
- 20 pounds per cubic foot (311 N/m³) or 20 pounds per square foot (958 Pa), whichever is less, but not less than actual loads.

1616.5.2 Uncovered open-frame roof structures. Uncovered open-frame roof structures shall be designed for a vertical live load of not less than 10 pounds per square foot (0.48 kN/m²) of the total area encompassed by the framework.

1616.6 Determination of snow loads. The ground snow load or the design snow load for roofs shall conform with the adopted ordinance of the city, county, or city and county in which the project site is located, and shall be approved by DSA.

1616.7 Wind loads.

1616.7.1 Story drift for wind loads. The calculated story drift due to wind pressures with ultimate design wind speed, $V_u$, shall not exceed 0.008 times the story height for buildings less than 65 feet (19,812 mm) in height or 0.007 times the story height for buildings 65 feet (19,812 mm) or greater in height.

Exception: This story drift limit need not be applied for single-story open structures.

1616.8 Establishment of flood hazard areas. Flood hazard maps shall include, at a minimum, areas of special flood hazard as identified by the Federal Emergency Management Agency's Flood Insurance Study (FIS) adopted by the local authority having jurisdiction where the project is located, as amended or revised with the accompanying Flood Insurance Rate Map (FIRM) and Flood Boundary and Floodway Map (FBFM) and related supporting data along with any revisions thereto.

1616.9 Earthquake loads.

1616.9.1 Seismic design category. The seismic design category for a structure shall be determined in accordance with Section 1613.

1616.9.2 Definitions. In addition to the definitions in Section 1613.2, the following words and terms shall, for the purposes of this section, have the meanings shown herein.

ACTIVE EARTHQUAKE FAULT. A fault that has been the source of earthquakes or is recognized as a potential source of earthquakes, including those that have exhibited surface displacement within Holocene time (about 11,000 years) as determined by California Geological Survey (CGS) under the Alquist-Priolo Earthquake Fault Zoning Act, those included as type A or type B faults for the U.S. Geological Survey (USGS) National Seismic Hazard Maps, and faults considered to have been active in Holocene time by an authoritative source, federal, state or local governmental agency.
BASE. The level at which the horizontal seismic ground motions are considered to be imparted to the structure or the level at which the structure as a dynamic vibrator is supported. This level does not necessarily coincide with the ground level.

DISTANCE FROM AN ACTIVE EARTHQUAKE FAULT. Distance measured from the nearest point of the building to the closest edge of an Alquist-Priolo Earthquake fault zone for an active fault, if such a map exists, or to the closest mapped splay of the fault.

IRREGULAR STRUCTURE. A structure designed as having one or more plan or vertical irregularities per ASCE 7 Section 1.3.

A structure designed as

> STRUCTURAL ELEMENTS. Floor or roof diaphragms, decking, joists, slabs, beams, or girders, columns, bearing walls, retaining walls, masonry or concrete nonbearing walls exceeding one story in height, foundations, shear walls or other lateral-force-resisting members, and any other elements necessary to the vertical and lateral strength or stability of either the building as a whole or any of its parts, including connection between such elements.

1616.9.3 Mapped acceleration parameters. Seismic Design Category shall be determined in accordance with Section 1613.3.5.

1616.9.4 Determination of seismic design category. Structures not assigned to Seismic Design Category E or F, in accordance with Section 1613.3, shall be assigned to Seismic Design Category D.

1616.9.4.1 Alternative seismic design category determination. The alternative Seismic Design Category determination procedure of Section 1613.3.5.1 is not permitted by DSA-SS/CC.

1616.9.4.2 Simplified design procedure. The simplified design procedure of Section 1613.3.5.2 is not permitted by DSA-SS/CC.

1616.9.5 Automatic sprinkler systems. The allowable values for design of anchors, hangers, and bracing elements shall be determined in accordance with material chapters of this code in lieu of those in NFPA 13.

1616.10 Modifications to ASCE 7. The text of ASCE 7 shall be modified as indicated in Sections 1616.10.1 through 1616.10.24.

1616.10.3 ASCE 7, Table 12.2-1. Modify ASCE 7 Table 12.2-1 as follows:

A. BEARING WALL SYSTEMS

17. Light-framed walls with shear panels of all other materials - Not permitted by DSA-SS/CC.

B. BUILDING FRAME SYSTEMS

24. Light-framed walls with shear panels of all other materials - Not permitted by DSA-SS/CC.

C. MOMENT RESISTING FRAME SYSTEMS

12. Cold-formed steel — special bolted moment frame - Not permitted by DSA-SS/CC.

Exception:

1) Systems listed in this section can be used as an alternative system when pre-approved by the enforcement agency.

2) Rooftop or other supported structures not exceeding two stories in height and 10 percent of the total structure weight can use the systems in this section when designed as components per ASCE 7 Chapter 13.

3) Systems listed in this section can be used for seismically isolated buildings when permitted by Section 1613.4.1.

1616.10.2 ASCE 7, Section 11.4.7. Modify ASCE 7 Section 11.4.7 by adding the following:

For buildings assigned to Seismic Design Category E and F, or when required by the building official, a ground motion hazard analysis shall be performed in accordance with ASCE 7 Chapter 21, as modified by Section 1803A.6 of this code.

1616.10.4 ASCE 7, Section 12.2.3.1. Replace ASCE 7 Section 12.2.3.1, Items 1 and 2 by the following:

The value of the response modification coefficient, $R$, used for design at any story shall not exceed the lowest value of $R$ that is used in the same direction at any story above that story. Likewise, the deflection amplification factor, $C_d$, and the system over strength factor, $Ω_0$, used for the design at any story shall not be less than the largest value of these factors that are used in the same direction at any story above that story.

1616.10.5 ASCE 7, Section 12.2.3.2. Modify ASCE 7 Section 12.2.3.2 by adding the following additional requirements for a two stage equivalent lateral force procedure or modal response spectrum procedure:

f. Where design of elements of the upper portion is governed by special seismic load combinations, the special loads shall be considered in the design of the lower portions.

1616.10.6 ASCE 7, Section 12.2.5.6.1. The exception in Item a is not permitted by DSA-SS/CC.

1616.10.7 ASCE 7, Section 12.2.5.7.1. The exception in Item a is not permitted by DSA-SS/CC.
In addition, the foundation and the connection of the superstructure elements to the foundation shall have the strength to resist, in addition to gravity loads, the lesser of the following seismic loads:

1. The strength of the superstructure elements
2. The maximum forces that would occur in the fully yielded structural system
3. Forces from the Load Combinations with overstrength factor in accordance with ASCE 7 Section 12.4.3.2

Exceptions:
1. Where referenced standards specify the use of higher design loads.
2. When it can be demonstrated that inelastic deformation of the foundation and superstructure-to-foundation connection will not result in a weak story or cause collapse of the structure.
3. Where basic structural system consists of light-framed walls with shear panels, unless the reference standard specifies the use of higher design loads.

Where the computation of the seismic overturning moment is by the equivalent lateral-force method or the modal analysis method, reduction in overturning moment permitted by Section 12.13.4 of ASCE 7 may be used.

Where moment resistance is assumed at the base of the superstructure elements, the rotation and flexural deformation of the foundation as well as deformation of the superstructure-to-foundation connection shall be considered in the drift and deformation compatibility analyses.
3. Mechanical and electrical components in Seismic Design Categories D, E or F where all of the following apply:
   a. The component is positively attached to the structure;
   b. Flexible connections are provided at seismic separation joints and between the component and associated ductwork, piping and conduit; and either:
      i. The component weighs 400 lb (1780 N) or less and has a center of mass located 4 ft. (1.22 m) or less above the adjacent floor or roof level;
      Exception: Special Seismic Certification requirements of this code in accordance with Section 1705A.12.3 shall be applicable.
      or
      ii. The component weighs 20 lb (89 N) or less or, in the case of a distributed system, 5 lb/ft (73 N/m) or less.
      Exception: The enforcement agency shall be permitted to require attachments for equipment with hazardous contents to be shown on construction documents irrespective of weight.

1616.10.16 ASCE 7, Section 13.5.6. Replace ASCE 7, Section 13.5.6 by the following:

13.5.6.1 Suspended ceilings. Suspended ceilings shall be in accordance with this section.

13.5.6.2 Seismic forces. The weight of the ceiling, \( W_p \), shall include the ceiling grid; ceiling tiles or panels; light fixtures if attached to, clipped to, or laterally supported by the ceiling grid; and other components that are laterally supported by the ceiling. \( W_p \) shall be taken as not less than 4 psf (19 N/m²).

   The seismic force, \( F_p \), shall be transmitted through the ceiling attachments to the building structural elements or the ceiling-structure boundary.

13.5.6.2 Industry standard construction for acoustical tile or lay-in panel ceilings. Unless designed in accordance with ASTM E 580 Section 5.2.8, or seismically qualified in accordance with Sections 13.2.5 or 13.2.6, acoustical tile or lay-in panel ceilings shall be designed and constructed in accordance with this section.

13.5.6.2.1 Seismic Design Categories D through F. Acoustical tile or lay-in panel ceilings in Seismic Design Categories D, E and F shall be designed and installed in accordance with ASTM C 635, ASTM C 636, and ASTM E 580, Section 5 - Seismic Design Categories D, E and F as modified by this section.

13.5.6.2.2 Modification to ASTM E 580. Modify ASTM E 580 by the following:

1. Exitways. Lay-in ceiling assemblies in exitways of hospitals and essential services buildings shall be installed with a main runner or cross runner surrounding all sides of each piece of tile, board or panel and each light fixture or grille. A cross runner that supports another cross runner shall be considered as a main runner for the purpose of structural classification. Splices or intersections of such runners shall be attached with through connectors such as pop rivets, screws, pins, plates with end tabs or other approved connectors.

2. Corridors and lobbies. Expansion joints shall be provided in the ceiling at intersections of corridors and at junctions of corridors and lobbies or other similar areas.

3. Lay-in panels. Metal panels and panels weighing more than 1/2 pounds per square foot (24 N/m²) other than acoustical tiles shall be positively attached to the ceiling suspension runners.

4. Lateral force bracing. Lateral force bracing is required for all ceiling areas except that they shall be permitted to be omitted in rooms with floor areas up to 144 square feet when perimeter support in accordance with ASTM E 580 Sections 5.2.2 and 5.2.3 are provided and perimeter walls are designed to carry the ceiling lateral forces. Restraint wires shall be secured with four tight twists in 1/4 inches, or an approved alternate connection.

5. Ceiling fixtures. Fixtures installed in acoustical tile or lay-in panel ceilings shall be mounted in a manner that will not compromise ceiling performance.

   All recessed or drop-in light fixtures and grilles shall be supported directly from the fixture housing to the structure above with a minimum of two 12-gage wires located at diagonally opposite corners. Leveling and positioning of fixtures may be provided by the ceiling grid. Fixture support wires may be slightly loose to allow the fixture to seat in the grid system. Fixtures shall not be supported from main runners or cross runners if the weight of the fixtures causes the total dead load to exceed the deflection capability of the ceiling suspension system.

   Fixtures shall not be installed so that the main runners or cross runners will be eccentrically loaded.

   Surface-mounted fixtures shall be attached to the main runner with at least two positive clamping devices made of material with a minimum of 14 gage. Rotational spring catches do not com-
PLY. A 12-gage suspension wire shall be attached to each clamping device and to the structure above.

6. Partitions. Where the suspended ceiling system is required to provide lateral support for the permanent or relocatable partitions, the connection of the partition to the ceiling system, the ceiling system members and their connections, and the lateral force bracing shall be designed to support the reaction force of the partition from prescribed loads applied perpendicular to the face of the partition. Partition connectors, the suspended ceiling system and the lateral-force bracing shall all be engineered to suit the individual partition application and shall be shown or defined in the drawings or specifications.

1616.10.17 ASCE 7, Section 13.6.5. Modify ASCE 7, Section 13.6.5.6, Exceptions 1 and 2, as follows:

Exceptions:

1. Design for the seismic forces of Section 13.3 shall not be required for raceways where either:
   a. Trapeze assemblies are used to support raceways and the total weight of the raceway supported by trapeze assemblies is less than 10 lb/ft (146 N/m), or
   b. The raceway is supported by hangers and each hanger in the raceway run is 12 in. (305 mm) or less in length from the raceway support point to the supporting structure. Where rod hangers are used, they shall be equipped with swivels to prevent inelastic bending in the rod.

2. Design for the seismic forces of Section 13.3 shall not be required for conduit, regardless of the value of I_p, where the conduit is less than 2.5 in. (64 mm) trade size.

1616.10.18 ASCE 7, Section 13.6.7. Replace ASCE 7, Section 13.6.7, Exceptions 1 and 2, by the following:

Exceptions:

The following exceptions pertain to ductwork not designed to carry toxic, highly toxic or flammable gases, or used for smoke control:

1. Design for the seismic forces of Section 13.3 shall not be required for ductwork where either:
   a. Trapeze assemblies are used to support ductwork and the total weight of the ductwork supported by trapeze assemblies is less than 10 lb/ft (146 N/m); or
   b. The ductwork is supported by hangers and each hanger in the duct run is 12 in. (305 mm) or less in length from the duct support point to the supporting structure. Where rod hangers are used, they shall be equipped with swivels to prevent inelastic bending in the rod.

2. Design for the seismic forces of Section 13.3 shall not be required where provisions are made to avoid impact with larger ducts or mechanical components or to protect the ducts in the event of such impact; and HVAC ducts have a cross-sectional area of 6 ft² (0.557 m²) or less, or weigh 10 lb/ft (146 N/m) or less.

1616.10.19 ASCE 7, Section 13.6.8. Modify ASCE 7, Section 13.6.8.2 by adding exception as follows:

Exception: Anchor capacities shall be determined in accordance with material chapters of this code in lieu of using those in NFPA 13 and demand shall be based on ASCE 7.

1616.10.20 ASCE 7, Section 13.6.8.3. Replace ASCE 7, Section 13.6.8.3 with the following:

13.6.8.3 Exceptions. Design of piping systems and attachments for the seismic forces of Section 13.3 shall not be required where one of the following conditions apply:

1. Trapeze assemblies are used to support piping whereby no single pipe exceeds the limits set forth in 3a. or b. below and the total weight of the piping supported by the trapeze assemblies is less than 10 lb/ft (146 N/m).

2. The piping is supported by hangers and each hanger in the piping run is 12 in. (305 mm) or less in length from the top of the pipe to the supporting structure. Where pipes are supported on a trapeze, the trapeze shall be supported by hangers having a length of 12 in. (305 mm) or less. Where rod hangers are used, they shall be equipped with swivels, eye nuts or other devices to prevent bending in the rod.

3. Piping having an R_s in Table 13.6-1 of 4.5 or greater is used and provisions are made to avoid impact with other structural or nonstructural components or to protect the piping in the event of such impact and where the following size requirements are satisfied:
   a. For Seismic Design Categories D, E or F and values of I_p greater than one, the nominal pipe size shall be 1 inch (25 mm) or less.
   b. For Seismic Design Categories D, E or F where I_p = 1.0 the nominal pipe size shall be 3 inches (80 mm) or less.

The exceptions above shall not apply to elevator piping.

1616.10.21 ASCE 7, Section 13.6.10.1. Modify ASCE 7, Section 13.6.10.1 by adding Section 13.6.10.1.1, as follows:

13.6.10.1.1 Elevators guide rail support. The design of guide rail support bracket fastenings and the supporting structural framing shall use the weight of the counterweight or maximum weight of the car plus not more than 40 percent of its rated load. The seismic forces shall be assumed to be distributed one-third to the top
guiding members and two-thirds to the bottom guiding members of cars and counterweights, unless other substantiating data are provided. In addition to the requirements of ASCE 7 Section 13.6.10.1, the minimum seismic forces shall be 0.5g acting in any horizontal direction.

**1616.10.22 ASCE 7, Section 13.6.10.4.** Replace ASCE 7 Section 13.6.10.4, as follows:

13.6.10.4 Retainer plates. Retainer plates are required at the top and bottom of the car and counterweight, except where safety devices acceptable to the enforcement agency are provided which meet all requirements of the retainer plates, including full engagement of the machined portion of the rail. The design of the car, cab stabilizers, counterweight guide rails and counterweight frames for seismic forces shall be based on the following requirements:

1. The seismic force shall be computed per the requirements of ASCE 7 Section 13.6.10.1. The minimum horizontal acceleration shall be 0.5g for all buildings.

2. \( W_v \) shall equal the weight of the counterweight or the maximum weight of the car plus not less than 40 percent of its rated load.

3. With the car or counterweight located in the most adverse position, the stress in the rail shall not exceed the limitations specified in these regulations, nor shall the deflection of the rail relative to its supports exceed the deflection listed below:

<table>
<thead>
<tr>
<th>RAIL SIZE (weight per foot of length, pounds)</th>
<th>WIDTH OF MACHINED SURFACE (inches)</th>
<th>ALLOWABLE RAIL DEFLECTION (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>( 1/4 )</td>
<td>0.20</td>
</tr>
<tr>
<td>11</td>
<td>( 1/4 )</td>
<td>0.30</td>
</tr>
<tr>
<td>12</td>
<td>( 1/4 )</td>
<td>0.40</td>
</tr>
<tr>
<td>15</td>
<td>( 1\frac{1}{16} )</td>
<td>0.50</td>
</tr>
<tr>
<td>18(1/2)</td>
<td>( 1\frac{1}{16} )</td>
<td>0.50</td>
</tr>
<tr>
<td>22(1/2)</td>
<td>2</td>
<td>0.50</td>
</tr>
<tr>
<td>30</td>
<td>2(1/4)</td>
<td>0.50</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25 mm, 1 foot = 305 mm, 1 pound = 0.454 kg.

Note: Deflection limitations are given to maintain a consistent factor of safety against disengagement of retainer plates from the guide rails during an earthquake.

4. Where guide rails are continuous over supports and rail joints are within 2 feet (610 mm) of their supporting brackets, a simple span may be assumed.

5. The use of spreader brackets is allowed.

6. Cab stabilizers and counterweight frames shall be designed to withstand computed lateral load with a minimum horizontal acceleration of 0.5g.

**1616.10.23 ASCE 7, Section 16.1.4.** Remove ASCE 7 Sections 16.1.4.1 and 16.1.4.2 and modify 16.1.4 by the following:

Maximum scaled base shears used to determine forces and drifts shall not be less than the base shear calculated using the equivalent lateral force procedure of Section 12.8.

**1616.10.24 ASCE 7, Section 16.2.4.** Modify ASCE 7 Section 16.2.4 by the following:

a) Where site is located within 3.1 miles (5 km) of an active fault at least seven ground motions shall be analyzed and response parameters shall be based on larger of the average of the maximum response with ground motions applied as follows:

1. Each of the ground motions shall have their maximum component at the fundamental period aligned in one direction.

2. Each of the ground motion's maximum component shall be rotated orthogonal to the previous analysis direction.

b) Where site is located more than 3.1 miles (5 km) from an active fault at least 10 ground motions shall be analyzed. The ground motions shall be applied such that one-half shall have their maximum component aligned in one direction and the other half aligned in the orthogonal direction. The average of the maximum response of all the analyses shall be used for design.

**1616.10.25 ASCE 7, Section 17.2.1.** Modify ASCE 7 Section 17.2.1 by adding the following:

The importance factor, \( I_p \), for parts and portions of a seismically isolated building shall be the same as that required for a fixed-base building of the same risk category.

**1616.10.26 ASCE 7 Section 17.2.4.7.** Modify ASCE 7 Section 17.2.4.7 by adding the following to the end of the section:

The effects of uplift and/or rocking shall be explicitly accounted for in the analysis and in the testing of the isolator units.

**1616.10.27 ASCE 7, Section 17.2.5.2.** Modify ASCE 7, Section 17.2.5.2 by adding the following:

The separation requirements for the building above the isolation system and adjacent buildings shall be the sum of the factored displacements for each building. The factors to be used in determining separations shall be:

1. For seismically isolated buildings, the deformation resulting from the analyses using the maximum considered earthquake unmodified by \( R_f \).

2. For fixed base buildings, \( C_d \) times the elastic deformations resulting from an equivalent static analysis using the seismic base shear computed via ASCE 7 Section 12.8.